4193A VECTOR IMPEDANCE METER ## manual produced by ## ElectronicsAndBooks@Yahoo.com PO Box 5156 2000 GD Haarlem Netherlands manual produced by ElectronicsAndBooks@Yahoo.com PO Box 5156 2000 GD Haarlem Netherlands #### SAFETY SUMMARY The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings given elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements. #### GROUND THE INSTRUMENT To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and the mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards. #### DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard. #### KEEP AWAY FROM LIVE CIRCUITS Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them. #### DO NOT SERVICE OR ADJUST ALONE Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. #### DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained. #### DANGEROUS PROCEDURE WARNINGS Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed. #### WARNING Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting. cal but this product man all of the call o With the A jour 7.90 1.30 7.14 TO COME TO THE SECOND OF S The form the properties of et group de les transportes en la defenta et al de la composition THE CONTRACTOR OF THE AND THE SUVER'S SCENE OF CONTRACTOR OF THE C a chi de enganta de en estado de entre de estado de estado de entre en estado de entre en entre en entre entre en entre entre en entre ent and the second second #### CERTIFICATION Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members. #### WARRANTY This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment, except that in the case of certain components listed in Section 1 of this manual, the warranty shall be for the specified period. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective. For warranty service or repair, this product must be returned to a service facility designated by HP. Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country. HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instructions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free. #### LIMITATION OF WARRANTY The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environment specifications for the product, or improper site preparation or maintenance. NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILTY AND FITNESS FOR A PARTICULAR PURPOSE. #### **EXCLUSIVE REMEDIES** THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY. #### ASSISTANCE Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products. For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual. ## SAFETY SYMBOLS General Definitions of Safety Symbols Used On Equipment or In Manuals. Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage to the instrument. Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 volts must be so marked). Protective conductor terminal. For protection against electrical shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment. Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common, as well as providing protection against electrical shock in case of fault. A terminal marked with this symbol must be connected to ground in the manner described in the installation (operating) manual, and before operating the equipment. Frame or chassis terminal. A connection to the frame (chassis) of the equipment which normally includes all exposed metal structures. \sim Alternating current (power line). AD STURY OF S === Direct current (power line). ~ Alternating or direct current (power line). WARNING A WARNING denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in injury or death to personnel. CAUTION The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Note A Note denotes important information. It calls attention to a procedure, practice, condition or the like, which is essential to highlight. - Marine Marine we the stage of the first of the stage ## MANUAL CHANGES 4193A ### **VECTOR IMPEDANCE METER** MANUAL IDENTIFICATION Model Number: 4193A Date Printed: AUG. 1983 Part Number: 04193-90000 This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual. - 36 BF 55 1 Later than the wife The automotive in the server spirit នំពីស សម្រាប់**របស់** ១៩៩៩ និសា To use this supplement: Make all ERRATA corrections. Make all appropriate serial number related changes indicated in the tables below: SERIAL PREFIX OR NUMBER MAKE MANUAL CHANGES MESERIAL PREFIX OR NUMBER MAKE MANUAL CHANGES | ALL | ERRATA | |-------------------------|---| | ALL | 1 10 10 10 10 10 10 10 10 10 10 10 10 10 | | 2206J00470
and above | 2 | | | | | 7. | ान हरेलुक्क एक रहेल अञ्चल १० वर्ग | | |----|-------------------------------------|--| | _ | 1 Company of the land of the second | | | | ewise indicator teni | | | | on ander of the a
ason noticial | | | | 1 .TE 18 19 | | | | Control of the Land | | 38000 8 3 ► NEW ITEM #### ERRATA - Page 8-5, Paragraph 8-30 Partially change line 16 to read: signal fed back from the A9 board to the A7 - Page 8-6, Figure 8-5. Signal Source Operation Partially change line 5 to read: the front-panel, the <u>+ N</u> circuit outputs a stable IKHz, lOKHz, Contract Co t sill, e estonish ngis **néar** luti Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies quote the manual identification information from your supplement, or the model number and print date from the title page of the manual. า้างการ เราะสายเลิยเกลื่อ NOmesia เลือนที่การเลือนที่ดียังสุดเลือนก็เลือนก็เลือนที่สุด Date/Div: JAN. 27, 1984/33 Page 1 | Option | Description | Kit Part Number | |--------|--------------------------|-----------------| | 907 | Handle Kit | 5061-9690 | | 908 | Rack Flange Kit | 5061 - 9678 | | 909 | Rack Flange & Handle Kit | 5061-9684 | - l. Remove adhesive-backed trim strips () from side at right and left front of instrument. - 2. HANDLE INSTALLATION: Attach front handle (3) to sides at right and left front of instrument with screws provided and attach trim (4) to handle. - 3. RACK MOUNTING: Attach rack mount flange (2) to sides at right and left front of instrument with screws provided. -
4. HANDLE AND RACK MOUNTING: Attach front handle 3 and rack mount flange 5 together to sides at right and left front of instrument with screws provided. - 5. When rack mounting (3 and 4 above), remove all four feet (lift bar at inner side of foot, and slide foot toward the bar). Figure 2-3. Rack Mount Kit. #### Herstellerbescheinigung Hiermit wird bescheinigt, daß das Gerät HP 4193A (Vector Impedance Meter) in Übereinstimmung mit den Bestimmungen von Postverfügung 1046/84 funkentstört ist. Der Deutschen Bundespost wurde das Inverkehrbringen dieses Gerätes angezeigt und die Berechtigung zur Überprüfung der Serie auf Einhaltung der Bestimmungen eingeräumt. Anm: Werden Meß- und Testgeräte mit ungeschirmten Kabeln und/oder in offenen Meßaufbauten verwendet, so ist vom Betreiber sicherzustellen, daß die Funk-Entstörbestimmungen unter Betriebsbedingungen an seiner Grundstücksgrenze eingehalten werden. #### Manufacturer's Declaration This is to certify that this product, the HP 4193A Vector Impedance Meter, meets the radio frequency interference requirements of directive 1046/84. The German Bundespost has been notified that this equipment was put into circulation and was granted the right to check the product type for compliance with these requirements. Note: If test and measurement equipment is operated with unshielded cables and/or used for measurements on open setups, the user must insure that under these operating conditions, the radio frequency interference limits are met at the border of his premises. ### TABLE OF CONTENTS | Secti | on | Title | Page | Section | n | Title | Page | |-------|---------------|---|---------------|---------|--------------------|--|------------------| | I | GENERA | L INFORMATION | | | 3-36. | Use of Furnished Probe | | | | | | | | | Adapters | | | | 1-1. | Introduction | 1-1 | | 3-39. | Probe | 3-13 | | | 1-4. | Description | 1-1 | | 3-41. | Probe and Test Fixture | | | | 1-10. | Specifications | 1-2 | | | Residuals | | | | 1-12. | Safety Considerations | 1-2 | | 3-45. | External Oscillator | | | | 1-15. | Instruments Covered by | | | 3-47. | X-Y Recorder Output | | | | 1 00 | Manual | 1-2 | | 3-49. | Analog Magnitude Output | 3-15 | | | 1-20. | Options | 1-3 | | 3-51. | Analog Phase Output | | | | 1-22. | Accessories Supplied | 1-3 | | 3-53. | Analog Frequency Output | | | | 1-24. | Accessories Available | 1-3 | | 3-55. | HP-IB Compatibility | 3-20 | | | | | | | 3-57. | HP-IB Interface | 2 20 | | ΙI | TNICTALI | ATION | | | 2 50 | Capabilities | | | 11 | INSTALI | ATION | | | 3-59.
3-61. | Connection to HP-IB | | | | 2-1. | Introduction | 2 1 | | 3-63. | HP-IB Control Switch | | | | 2-3. | Introduction | 2-1 | | 3 - 65. | Addressable Mode | | | | 2 - 5. | Initial Inspection Preparation for Use | 2-1
2-1 | | 3-67. | Talk Only Mode HP-IB Status Indicators | 3-21 | | | 2-6. | Power Requirements | 2-1 | | 3-69. | Local Key | | | | 2-8. | Line Voltage and Fuse | Z = 1 | | 3-71. | Data Output | 3-22 | | | 2 | Selection | 2-1 | | 3-73. | Output Data Format | 3-22 | | | 2-10. | Power Cable | | | 3-75. | Programming Guide for | J-2. | | | 2-14. | Operating Environment | 2-2 | | J-7J. | the 4193A | 3-23 | | | 2-17. | Installation | Z - Z | | 3-77. | Service Request Status | J . L . | | | 2 17. | Instructions | 2-2 | | J-77. | Byte | 3-23 | | | 2-19. | Installation of Options | 2-2 | | 3-79. | Parameter Setting | 3-24 | | | 2 13. | 907, 908 and 909 | 2-2 | | 5-75. | Tarameter Setting | 0 2 | | | 2-21. | Storage and Shipment | 2-2 | | | | | | | 2-22. | Environment | | ΙV | PERFOR | RMANCE TESTS | | | | 2-24. | Packaging | 2-4 | - | | | | | | | | - ' | | 4-1. | Introduction | 4 - | | | | | | | 4-3. | Equipment Required | 4 – 1 | | III | OPERATI | ION | | | 4-5. | Test Record | 4 – 1 | | | | | | | 4-7. | Calibration Cycle | 4 – 1 | | | 3-1. | Introduction | 3-1 | | 4-9. | Initial Operation Check | 4-2 | | | 3 - 3. | Operating Instructions | | | 4-10. | Test Frequency Accuracy | | | | 3-5. | Panel Features | 3-1 | | | Test | 4-3 | | | 3 - 7. | Self Test | 3-1 | | 4-11. | Test Signal Level Test | 4-4 | | | 3-9. | Initial Control | | | 4-12. | Impedance Accuracy Test | 4 – 9 | | | | Settings | 3-7 | | 4-13. | External Oscillator | | | | 3-11. | Measurement Range | 3 - 7 | | | Usage Check | 4 – 1 | | | 3-13. | Test Signal Level | 3 - 7 | | 4-14. | Recorder Output Voltage | | | | 3-15. | Test Frequency | 3-7 | | | Accuracy Test | 4 - 8 | | | 3-17. | Swept Frequency | | | 4-15. | HP-IB Interface Test | 4-9 | | | | Measurements | 3-7 | | | | | | | 3-19. | Partial Sweep | | | | | | | | | Measurement | 3-7 | V · | ADJUS ² | TMENTS | | | | 3-21. | Full Sweep Measurement | 3-7 | | | | | | | | Displays | 3-11 | | 5-1. | Introduction | 5 - | | | 3-28. | Error-Codes and Over-range | 2 7 7 | | 5-3. | Safety Requirements | 5 -
5- | | | 2 20 | Annunciations | | | 5-7. | Equipment Required | 5 - | | | 3-30. | Initial Display Test | | | 5-9. | Factory Selected | 5- | | | | External Triggering | | | | Components | 5 - | | | J-J4. | Measurement Time | 3 - 13 | | | | | #### TABLE OF CONTENTS | Secti | on | Title | Page | Section | on | Title | Page | |-------|----------------|--|--------------|---------|-------------------------|--|------------------------------| | | 5-11. | Adjustment Relationships | 5-2 | VII | MANUAL | . CHANGES | | | | 5-13.
5-15. | Adjustment Locations Initial Operating | 5-2 | | 7-1.
7-3. | Introduction | 7-1
7-1 | | | | Procedure | 5-2 | | | | | | | 5-17. | Extrusion Board Removal | 5 - 2 | VIII | SERVIC | E | | | | 5-19.
5-21. | Board Extension | 5-2 | | 8-1.
8-3. | Introduction | 8-1
8-1 | | | 5-22. | (A8) | 5-4 | | 8-5.
8 - 7. | Theory of Operation
Recommended Test Equipment | 8-1
8-1 | | | 5-23. | (A8) | 5-4 | | 8-9.
8-11. | Troubleshooting | 8-1
8-1 | | | 5-24. | Adjustment (A8) Integrator Offset Adjustment (A11) | 5 - 6 | | 8-13.
8-15. | Basic Theory | 8 - 2 | | | 5-25. | VCXO Adjustment (A6) | 5 - 8 | | 8-17. | Signal Source Block | 8-4 | | | 5-26. | BPF Output Level Adjustment (A6) | 5 - 9 | | 8-19.
8-21. | A2 ALC Amplifier | 8-4
8-4 | | | 5-27. | A2 Output Amplifier Bias Adjustment (A2) | 5-10 | | 8-23.
8-25. | A8 Crystal Oscillator A9 Mixer | 8-4
8-4 | | | 5-28. | Sampling Pulse Height Adjustment (Al) | 5-11 | | 8-27. | AlO Voltage Controlled Oscillator | 8-4 | | | 5-29. | ALC Reference Voltage Adjustment (Al3) | 5-15 | | 8-29.
8-31. | All Integrator | 8-5
8-8 | | | 5-30. | IF BPF Gain/Phase | | | 8-34. | Al Samplig Pulse Generator | 8-8 | | | 5-31. | Adjustment (A12) I Channel Sampling Diode | 5-16 | | 8-36.
8-38. | A51 Probe I-Channel A52 Probe V-Channel | 8 - 8
8 - 8 | | | 5 20 | Bias Adjustment (A4) | 5-17 | | 8-40. | A5 Mixer/Divider | 8-8 | | | 5-32. | Test Signal Level Adjustment (A4) | 5-18 | | 8-42. | A6 Voltage Controlled Crysta Oscillator | 1
8-9 | | | 5-33. | V Channel Sampling Diode | | | 8-44. | Detection Block | 8-12 | | | 5-34. | Magnitude and Phase | 5-18 | | 8-46.
8-48. | A3 IF V-Channel Amplifier .
A4 IF I-Channel Amplifier . | 8-12 | | | | Accuracy Adjustment (A3/A4/A41) | 5-19 | | 8-50.
8-52. | A12 IF BPF | | | | 5-35. | Recorder Output Voltage | | | 8-54. | A14 ADC | | | | | Adjustment (Al5) | 5-20 | | 8-56. | Digital Section Block Diagram Discussion | | | VI | REPLAC | EABLE PARTS | | | 8-58.
8-60.
8-62. | Al5 Analog Output | 8-14 | | | 6-1. | Introduction | 6-1 | | 8-64. | Al8 Display/Key Control | | | | 6-3. | Abbreviations | 6-1 | | 8-66. | Overall Measurement Seguence | 8-16 | | | 6-5. | Replaceable Parts List | 6-1 | | 8-76. | Timing Diagram Discussion | | | | 6-7. | Ordering Information | 6 - 2 | | 8-81. | Probe Repair | | | | 6-10.
6-12. | Spare Parts Kit Direct Mail Order | 6-2 | | 8-86.
8-88 | Probe Assembly | 8-19 | | | 0-12. | System | 6-2 | | 0-00 | Adjustment Related to Probe Replacement and Repair . | 8-19 | | | | 0,000m | Ü . | | 8-90. | Frequency Characteristics | 0-13 | | | | | | | 5 50. | Adjustment | 8-19 | #### List of Tables ## LIST OF TABLES | Number | Title | Page | Number | Title | Page | |---------------------------------------|--|------------------------------|----------------------|---|--------------------| | 1-1.
1-2.
1-3. | Specifications | 1-4
1-9 | 6-1. | List of Reference Designators and Abbreviations | 6-1 | | 1-4. | Accessories Available | | 6-2.
6-3.
6-4. | Manufacturers Code Lists
Replaceable Parts
Parts Identification | 6-2
6-3
6-42 | | 3-1. | Measurement Range and Test
Signal Level | 3-7 | 6-5. | Cables on Extrusion Boards | 6-47 | | 3-2.
3-3.
3-4.
3-5. | Test Frequency Range Operational Error-codes Annunciations SELF TEST Error-codes | 3-7
3-11
3-12 | 7-1. | Manual Changes by Serial
Number | 7 – 1 | | 3-6.
3-7.
3-8.
3-9.
3-10. | External Trigger Pulse Furnished Probe Adapters Typical Residuals at 100MHz HP-IB Interface Capabilities . Functions of Bit Switches ① | 3-13
3-13
3-14
3-20 | 8-1.
8-2.
8-3. | I/O Group Functions | 8-16 | | 3-11.
3-12. | through (§) | 3-23 | | | | | 4-1.
4-2. | Recommended Test Equipment
Test Frequency Accuracy Test | 4-0 | | | | | 4-3. | Limits Test Signal Level Test | 4-3 | | | | | 4-4. | Limits | 4-4 | | | | | 4-5. | for 10Ω
Impedance Accuracy Test | 4-5 | | | | | 4-6. | Limits for 100Ω Impedance Accuracy Test | 4-6 | | | | | 4-7. | Limits for $lk\Omega$ | 4-6 | | | | | 4-8. |
Limits for $10k\Omega$ | 4-6 | | | | | 4-9. | Limits for 5pF | 4-6 | | | | | 4-10. | Limits | 4-8 | | | | | 4-11. | Test Program 1 Controller Instructions and Operator Responses for | | | | | | 4-12. | Test Program 2 Controller Instructions and Operator Responses for | | | | | | | Test Program 3 | 4-15 | | | | | 5-1.
5-2.
5-3. | Adjustable Components Factory Selected Components Adjustment Requirements | 5-0
5-3
5-3 | | | | #### LIST OF ILLUSTRATIONS | Number | Title | Page | Number | Title | Page | |----------------|--|--------------|------------------------------|--|----------------------| | 1-1. | Model 4193A and Accessories | 1-1 | 5-5. | Integrator Offset Adjustment | | | 1-2. | Serial Number Plate | | 5-6. | Setup VCXO Adjustment Setup | 5-7
5-8 | | 2-1. | Voltage and Fuse Selection | | 5-7.
5-8. | BPF Output Level Adjustment Setup | 5-9 | | 2-2.
2-3. | Power Cables Supplied
Rack Mount Kit | | 5-9. | Adjustment Setup Sampling Pulse Height | 5-10 | | 3-1. | Front Panel Features | 3-2 | 5-10. | Adjustment Setup | | | 3-2.
3-3. | Rear Panel Features Spot Frequency Setting | 3-6 | 5-11. | ALC Reference Voltage Adjustment Setup | | | 3-4. | Procedure | 3-8
3-9 | 5-12. | IF BPF GAIN/PHASE Adjustment Setup | | | 3-5.
3-6. | FULL Sweep Measurement
External Trigger Pulse | 3-10 | 5-13. | I Channel Sampling Diode DC
Bias Adjustment Setup | | | 3-7.
3-8. | Probe Socket Usage
Equivalent Circuit | 3-13
3-14 | 5-14. | Drive Current Level Adjustment Setup | 5-18 | | 3-9.
3-10. | Residuals Compensation
In-circuit Impedance | | 5-15. | V Channel Sampling Diode DC
Bias Adjustment Setup | 5-18 | | 3-11. | Measurement Procedure General Component Measurement | | 5-16. | Magnitude and Phase Accuracy Adjustment Setup | 5-19 | | 3-12. | Procedure External Oscillator Usage Procedure | | 5-17. | Recorder Output Voltage
Adjustment Setup | 5-20 | | 3-13.
3-14. | X-Y Recorder Usage Procedure . HP-IB Control Switch | 3-19 | 6-1. | Exploded View of Probe | | | 3-15.
3-16. | ADDRESSABLE Mode | 3-20 | 6-2. | Assembly | 6-45
6-46 | | 3-17.
3-18. | Status Byte | 3-24 | | | | | 3-19.
3-20. | Sample Program 1 | 3-27 | 8-1.
8-2.
8-3.
8-4. | Basic Block Diagram | 8-3
8-3
8-5 | | 4-1. | Initial Operation Check Setup | 4-2 | 8-5.
8-6. | Signal Source Operation Sampling Block Diagram | 8-6
8-9 | | 4-2. | Test Frequency Accuracy Test Setup | | 8-7.
8-8. | Sampling Pulse Generation
Sampling Pulses | 8-11 | | 4-3.
4-4. | Test Signal Level Test Setup . Impedance Accuracy Test Setup | | 8-9.
8-10.
8-11. | Detection Block Diagram Analog Section Block Diagram . Digital Section Block Diagram | 8-13
8-13
8-15 | | 4-5. | External Oscillator Usage Check Setup | | 8-12. | Measurement Sequence Flow Diagram | 8-16 | | 4-6. | Recorder-output Voltage Accuracy Test Setup | | 8-13.
8-14. | IOG Lines | 8-16
8-17 | | 4-7. | HP-IB Interface Test Setup | | 8-15.
8-16.
8-17. | Timing Diagram Probe Probe Assembly | . 8-17
. 8-18 | | 5-1. | 100MHz Reference Frequency Adjustment Setup | 5 - 4 | 8-18. | Frequency Characteristics Adjustment | | | 5-2.
5-3. | 300MHz BPF Adjustment Setup
300MHz Level | 5-5 | 8-19. | Assembly Locations | . 8-24 | | 5-4. | 300MHz Level | | | | | ## LIST OF ILLUSTRATIONS | Number | Title | Page | Number | Title P | Page | |----------------|--|---------------|----------------|---|-----------------------| | 8-20.
8-21. | Schematic Diagram Notes
Board Isolation Flow Chart | 8-25
8-27 | 8-45. | A7 Divider Board Assembly Schematic Diagram 8 | 3 - 75 | | 8-22. | Signal Source Not Ready Flow Chart | 8-31 | 8-46. | A8 Crystal Oscillator Board Assembly Component Locations 8 | | | 8-23.
8-24. | ALC Not Ready Flow Chart Al Board Troubleshooting Flow | 8-35 | 8-47. | A8 Crystal Oscillator Board | 3-77
3 - 77 | | 8-25. | Chart | 8-39 | 8-48. | A9 Mixer Board Assembly Component Locations 8 | | | | Board Assembly Component Locations | 8-41 | 8-49. | A9 Mixer Board Assembly Schematic Diagram 8 | | | 8-26. | Al Sampling Pulse Generator/
A4l Delay Board Assembly | | 8-50. | All Voltage Controlled Oscillator
Board Assembly Component | ^ | | 8-27. | Schematic Diagram | | 8-51. | Locations | | | 8-28. | A2 ALC Amplifier Board Assembly | | 0 50 | Diagram8 | 3-85 | | 8-29. | Component Locations A2 ALC Amplifier Board Assembly | | 8-52. | All Integrator Amplifier Board Assembly Component Locations 8 | 3-89 | | 8-30. | A3 Board Troubleshooting Flow | | 8-53.
8-54. | | 3-89 | | 8-31. | A3 V-Channel Amplifier Board | | | | 3-93 | | 8-32. | Assembly Component Locations A52 Probe V-Channel Board | | | | 3-95 | | 8-33. | Assembly Component Locations A3 V-Channel Amplifier/A52 Probe | 8 - 53 | 8-56. | A12 IF BPF Board Assembly Schematic Diagram 8 | 3-95 | | | V-Channel Board Assembly
Schematic Diagram | 8-53 | 8-57. | Al3 Board Troubleshooting Flow | 3-99 | | 8-34. | A4 Board Troubleshooting Flow Chart | | 8-58. | Al3 Detector Board Assembly Component Locations 8- | | | 8-35. | A4 I-Channel Amplifier Board | 0 50 | 8-59. | Al3 Detector Board Assembly Schematic Diagram 8- | | | 8-36. | Assembly Component Locations A51 Probe I-Channel Board | | 8-60. | A14 Board Troubleshooting Flow Chart8- | | | 8-37. | Assembly Component Locations
A4 I-Channel Amplifier/A51 Probe
I-Channel Board Assembly | | 8-61. | A14 ADC Board Assembly Component Locations8- | | | 8-38. | Schematic Diagram A5 Board Troubleshooting Flow | | | A14 ADC Board Assembly Schematic Diagram8- | 107 | | | ChartA5 Mixer and Divider Board | | | Als Board Troubleshooting Flow Chart8- | 113 | | 8-40. | Assembly Component Locations A5 Mixer and Divider Board | | | A15 Analog Output Board Assembly Component Locations8- | 115 | | 8-41. | Assembly Schematic Diagram A6 Board Troubleshooting Flow | 8-65 | 8-65. | Als Analog Output Board Assembly Schematic Diagram 8- | 115 | | 8-42. | ChartA6 Voltage Controlled Crystal | 8-67 | 8-66. | Al6 Board Troubleshooting Flow Chart8- | | | | Oscillator Board Assembly Component Locations | | 8-67. | A16 HP-IB Board Assembly Component Locations 8- | | | 8-43. | A6 Voltage Controlled Crystal
Oscillator Board Assembly | | 8-68. | A16 HP-IB Board Assembly Schematic Diagram8- | | | 8-44. | Schematic Diagram A7 Divider Board Assembly | | 8-69. | Al7 Board Troubleshooting Flow Chart8- | | | | Component Locations | Q_75 | | | | #### LIST OF ILLUSTRATIONS | Number | Title | Page | |--------|---|-------| | 8-70. | Al7 Control Logic Board | | | 0 71 | Assembly Component Locations | 8-123 | | 8-71. | Al7 Control Logic Board | 0 100 | | 8-72. | Assembly Schematic Diagram Al8 Board Troubleshooting Flow | 8-123 | | 0-72. | Chart | 8-127 | | 8-73. | Al8 Display Board Assembly | 0 127 | | | Component Locations | 8-129 | | 8-74. | Al8 Display Board Assembly | | | | Schematic Diagram | 8-129 | | 8-75. | A20 Power Supply Board | 0 101 | | 0 76 | Assembly Component Locations | 8-131 | | 8-76. | A20 Power Supply Board Assembly Schematic Diagram | 8-131 | ## SECTION I GENERAL INFORMATION #### 1-1. INTRODUCTION 1-2. This operation and service manual contains the information required to install, adjust, and operate. test. service Hewlett-Packard Model 4193A Vector Impedance Meter. Figure 1-1 shows the instrument and supplied accessories. This section covers instrument specifications, identification. description, options, accessories, and other basic information. 1-3. Listed on the title page of this manual is a microfiche part number that can be used to order 4 x 6 inch microfilm transparencies of the manual. Each microfiche contains up to 60 photo-duplicates of the manual pages. The microfiche package also includes the latest manual changes supplement as well as all pertinent service notes. To order an additional manual, use the part number listed on the title page of this manual. #### 1-4. DESCRIPTION 1-5. The HP Model 4193A Vector Impedance Meter is a probe-type, fully automatic microprocessor-based test instrument designed for laboratory and production line applications. It measures and digitally displays impedance magnitude, IZI, and phase angle, $\boldsymbol{\theta}$, of active or passive circuits, in-circuit components, discrete components at test frequencies from 400kHz to $110 \,\mathrm{MHz}$ with $10 \,\mathrm{m}\Omega$ (impedance) and $0.1 \,^{\circ}$ (phase) resolution. Frequency and measured impedance and phase are displayed on the front-panel with 4-digit and 3 1/2-digit resolution, respectively. provided: measurement speeds are NORMAL and HIGH SPEED. In NORMAL mode operation, the 4193A performs one measurement per second; in HIGH SPEED mode operation, it performs approximately seven measurements per second. Figure 1-1. Model 4193A and Accessories. - The 4193A's built-in test signal synthesizer can be set with lkHz (maximum) resolution to any frequency within the range of 400kHz to 110MHz for SPOT measurements, or it can be automatically or manually swept in one of two sweep modes: FULL and PARTIAL. In FULL SWEEP mode, frequency is logarithmically swept from 400kHz to 110MHz, and measurement is made at 43 frequency points. In PARTIAL SWEEP mode, frequency is swept from the selected START frequency to the selected STOP frequency. The number of measurement points at 100, selectable 1000, or is RESOLUTION. Frequency resolution is lkHz, 10kHz, or 100kHz, depending on the selected frequency range. For measurements requiring resolution, higher frequency an external frequency synthesizer can be connected. Using this technique, 100Hz frequency resolution can be
obtained over the 4193A's full frequency range, 400kHz to 110MHz. - l-7. Test frequency, auto-ranging, frequency sweep, introspective testing (SELF TEST), display, triggering, analog and HP-IB outputs, calculations, and all other instrument functions are microprocessor controlled. This microprocessor-based hardware design makes operation and measurement set-up simple. - The 4193A is equipped with complete HP-IB capabilities for remote control of all front-panel controls. This feature makes it the 4193A into a possible to integrate system which cost-efficient measurement increases DUT throughput, and improves circuit design efficiency. The 4193A is also equipped with X-Y Recorder outputs and pen lift control. Clear and accurate hard copies of the DUT's phase-frequency impedance-frequency or characteristics can be easily obtained with this capability, without an external controller. - 1-9. To maximize the versatility of the 4193A, a wide selection of probe adapters and test fixtures is available. Thus, components of virtually any shape or size can be measured. #### 1-10. SPECIFICATIONS Complete specifications of the Model 4193A Vector Impedance Meter are given in These specifications are Table 1-1. performance standards or limits against which the instrument is tested. The test procedures for the specifications are covered in Section IV, Performance Tests. Table 1-2 lists supplemental characteristics. Supplemental performance are characteristics not performance specifications but are typical characteristics included as additional information for the operator. When the 4193A Vector Impedance Meter is shipped from the factory, it meets the specifications listed in Table 1-1. #### 1-12. SAFETY CONSIDERATIONS - 1-13. The Model 4193A Vector Impedance Meter has been designed to conform to the safety requirements of an IEC (International Electromechanical Committee) Safety Class I instrument and is shipped from the factory in a safe condition. - l-14. This operation and service manual contains information, cautions, and warnings which must be followed by the user to ensure safe operation and to maintain the instrument in a safe condition. #### 1-15. INSTRUMENTS COVERED BY MANUAL - l-16. Hewlett-Packard uses a two-section nine character serial number which is stamped on the serial number plate (Figure 1-2) attached to the instrument's rear-panel. The first four digits and the letter are the serial prefix and the last five digits are the suffix. The letter placed between the two sections identifies the country where the instrument was manufactured. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page. - l-17. An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates the instrument is different from those described in this manual. The manual for this new instrument may be accompanied by a yellow Manual Changes supplement or have a different manual part number. This supplement contains "change information" that explains how to adapt the manual to the newer instrument. Figure 1-2. Serial Number Plate. l-18. In addition to change information, the supplement may contain information correcting errors (called Errata) in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with this manual's print date and part number, both of which appear on the manual's title page. Complimentary copies of the supplement are available from Hewlett-Packard. If the serial prefix or number of an instrument is lower than that on the title page of this manul, see Section VII, Manual Changes. 1-19. For information concerning a serial number prefix that is not listed on the title page or in the Manual Change supplement, contact the nearest Hewlett-Packard office. #### 1-20. OPTIONS 1-21. Options are modifications to the standard instrument that implement the user's special requirements for minor functional changes. The 4193A has four options: Option 907: Front Handle Kit. Furnishes Carrying handles for both ends of front-panel. Option 908: Rack Frange Kit. Furnishes flanges for rack mounting for both ends of front-panel. Option 909: Rack Flange and Front Handle Kit. Furnishes both front handles and rack flanges for instrument. Option 910: An extra copy of the Operation and Service Manual. Installation procedures for these options are given in Section II. #### 1-22. ACCESSORIES SUPPLIED 1-23. The Model 4193A VECTOR IMPEDANCE METER, along with its furnished accessories, is shown in Figure 1-1. The furnished accessories are also listed below: Probe Kit HP Part No. 04193-87001 Power Cable ·······HP Part No. 8120-1378 Fuse HP Part No. 2110-0304 Probe kit contents are listed in Table 1-3. #### 1-24. ACCESSORIES AVAILABLE l-25. A test fixture adapter and three test fixtures are available to facilitate measurement on a wide range of discrete components. Also available is a calibration-standard set for calibration of the 4193A or similar probe-type instruments. A brief description of each available accessory is given in Table 1-4. Table 1-1. Specifications. (Sheet 1 of 5) #### **SPECIFICATIONS** IMPEDANCE MAGNITUDE MEASUREMENT: Range, Display, and Resolution: | MAGNITUDE RANGE | DISPLAY RANGE | DISPLAY (digit) | RESOLUTION | |------------------------|--|-----------------|----------------------| | 10Ω | 00.00Ω to 19.99Ω | 3 1/2 | $1\mathrm{Om}\Omega$ | | 100Ω | 000.0Ω to 199.9Ω | 3 1/2 | 100mΩ | | 1 k Ω | $0.000 \mathrm{k}\Omega$ to $1.999 \mathrm{k}\Omega$ | 3 1/2 | 1Ω | | 10kΩ | 00.00 k Ω to 19.99 k Ω | 3 1/2 | 10Ω | | $100 \mathrm{k}\Omega$ | 000.kΩ to 120.kΩ | 2 1/2 | $1 \text{k}\Omega$ | Accuracy: See Table A. Range Mode: Auto and manual (up-down). IMPEDANCE PHASE MEASUREMENT: Range and Resolution: | MAGNITUDE RANGE | DISPLAY RANGE | RESOLUTION | |-----------------|------------------|------------| | 10Ω | 180.0° to-180.0° | 0.1° | | 100Ω | 180.0° to-180.0° | 0.1° | | 1kΩ | 180.0° to-180.0° | 0.1 | | 10kΩ | 180.0° to-180.0° | 0.1° | | 100kΩ | 180.° to-180.° | 1° | Accuracy: See Table A. Table A. Accuracies | | | | ···· | | | | |-----------------|---|--|---|--|---|--| | MAGNI -
TUDE | | | Test Freque | | | | | RANGE | | 0.4 to 1 | 1 to 10 | 10 to 40 | 40 to 110 | | | 100 | Z | $\frac{7}{2}$ $\frac{1}{2}$ $\frac{1}$ | | ±[(4.5+0.18f)∵ of reading +4 counts] | ±[(4.5+0.18)% of reading +4 counts] | | | | θ | $\theta = \pm (1.7 + \frac{1.8}{f} + \frac{35}{2})$
degrees $\pm (3.3 + 0.20 f + \frac{35}{2})$ degrees \pm | | ±(3.3+0.20f+35/Z) degrees | $\pm (3.3+0.20f+\frac{35}{2})$ degrees | | | 100£ | Z | $Z = t(2.4 + \frac{0.56}{f})$; of reading +4 counts] $t[3.0\%$ of reading +4 counts] | | $\pm[(2.6+0.037f)]$ of reading +4 counts] | ±[(2.6+0.037f); of reading +4 counts] | | | | θ | $\pm (1.5 + \frac{1.9}{f} + \frac{35}{Z})$ degrees | $\pm (3.3+0.035f+\frac{35}{2})$ degrees | $\pm (3.3 + 0.035 f + \frac{35}{2})$ degrees | ±(3.3+0.035f+35/Z) degrees | | | 1k | Z | $\pm [(3.2 + \frac{0.56}{f})]$ of reading +4 counts] | $\pm[3.7]$ of reading +4 counts] | $\pm[(2.7+0.11f)]$, of reading +4 counts] | $\pm [(2.7+0.11f)]$ of reading +4 counts] | | | | θ | $\pm (1.6 + \frac{1.8}{f} + \frac{35}{Z})$ degrees | $\pm (3.3+0.11f+\frac{35}{2})$ degrees | $\pm (3.3+0.11f+\frac{35}{2})$ degrees | $\pm (3.3+0.11f+\frac{35}{2})$ degrees | | | 10k;: | Z | $\pm [(2.9 + \frac{0.56}{f})^2]$ of reading +4 counts | $\pm[(3.2+0.29f)]$ of reading +4 counts | $\pm[(0.74+0.53f)^{\frac{1}{2}} \text{ of reading +4 counts}]$ | | | | | | $\pm (1.8 + \frac{1.9}{f} + \frac{35}{2})$ degrees | $\pm (3.1+0.53f+\frac{35}{7})$ degrees | $\pm (8.3+0.01f + \frac{35}{2})$ degrees | | | | 1006.* | Z | $\pm [(3.3 + \frac{0.56}{f})]$ of reading +4 counts] | | | | | | TUUK. | θ | $\pm (3.0 + \frac{1.9}{f} + \frac{35}{Z})$ degrees | | | | | Where, f is test frequency in MHz, and Z is number of MAGNITUDE display counts. On the 100k: range, the small zero σ is not counted in Z. ^{*:} Measurement accuracy is not specified above $100k\Omega$. Table 1-1. Specifications (Sheet 2 of 5) #### TEST FREQUENCY: #### Range and Resolution: | TEST FREQUENCY RANGE | RESOLUTION | |----------------------|------------| | 0.400 to 9.999MHz | lkHz | | 10.00 to 99.99MHz | 10kHz | | 100.0 to 110.0MHz | 100kHz | Accuracy: ±0.01% of setting Stability: ±100 ppm (at 0 °C to 55 °C) #### Full Frequency Sweep: Test frequency is automatically and logarithmically swept from 400kHz to 110MHz. Measurement is made at the following 43 frequency points. 400kHz, 455kHz, 500kHz, 600kHz, 700kHz, 800kHz, 900kHz, 1MHz, 1.2MHz, 1.4MHz, 1.6MHz, 1.8MHz, 2MHz, 2.333MHz, 2.666MHz, 3MHz, 3.5MHz, 4MHz, 4.5MHz, 5MHz, 6MHz, 7MHz, 8MHz, 9MHz, 10MHz, 12MHz, 14MHz, 16MHz, 18MHz, 20MHz, 23.33MHz, 26.66MHz, 30MHz, 35MHz, 40MHz, 45MHz, 50MHz, 60MHz, 70MHz, 80MHz, 90MHz, 100MHz, 110MHz. Figure A. Full-Sweep Frequency Points. #### Table 1-1. Specifications (Sheet 3 of 5) #### Partial Frequency Sweep: Test frequency is automatically and linearly swept from the selected START FREQ. to the selected STOP FREQ. Number of measurement points is selectable with the STEPS keys--100, 1000, HIGH RESOLN. 100: One hundred measurement points. 1000: One thousand measurement points. HIGH RESOLN: Maximum step resolution for the selected sweep frequency range (START to STOP) is automatically selected. MEASUREMENT TERMINAL: Two-terminal low-grounded probe, connected to instrument with a coaxial cable. REFERENCE PLANE: Probe tip without probe pin. RECORDER OUTPUTS: DC voltage outputs proportional to displayed values. Magnitude Output: 0 to 1 Vdc proportional to displayed MAGNITUDE value max 1 Vdc (at 2000 counts). Phase Output: -l Vdc to +l Vdc proportional to displayed PHASE value max ±1 Vdc (at ±1800 counts). Frequency Output: 0 to 1 Vdc proportional to test frequency, as follows: $V_F = \frac{F_{SPOT} - F_{START}}{F_{STOP} - F_{START}}$ for manual and Partial Sweep $V_F = \frac{\log (F_{SPOT} / F_{START})}{\log (F_{STOP} / F_{START})}$ for Full Sweep where, VF is the analog output voltage. 0 Vdc and 1 Vdc for START frequency and STOP frequency, respectively. PEN LIFT: TTL level signal. Goes LOW (PEN DOWN) at start of frequency sweep; goes HIGH (PEN UP) at completion of frequency sweep. TRIGGER: Internal, external, or manual. ${\tt EXTERNAL}\ \ {\tt TEST}\ \ {\tt SIGNAL}:\ {\tt External}\ \ {\tt oscillator}\ \ {\tt can}\ \ {\tt be}\ \ {\tt connected}\ \ {\tt to}\ \ {\tt obtain}\ \ {\tt higher}\ \ {\tt test}$ frequency resolution. Frequency: 400kHz to ll0MHz. Input Level: 0dBm to +5dBm. Input Terminal: BNC connector. #### Table 1-1. Specifications (Sheet 4 of 5) SELF TEST: Checks the 4193A's basic operation and displays the test results. Initiated each time the instrument is turned on or when the SELF TEST mode is set by the SELF TEST key or via the HP-IB. Refer to paragraph 3-7. HP-IB INTERFACE: Remote control and data output via the HP-IB (based on IEEE-Std-488 and ANSI-MCl.). Interface Capability: SHI, AHI, T5, L4, SRI, RLI, DCI, DTI, El Remote Control Function: All front-panel functions except LINE ON/OFF switch Data Output: Measured impedance magnitude and phase values, test frequency value, and measurement setting information. WARM-UP TIME: $\stackrel{>}{=}60$ minutes AMBIENT TEMPERATURE: 23 °C±5 °C (error limits double in magnitude and phase accuracies for 0°C to 55°C temperature range). #### GENERAL Operating Temperature: 0 °C to +55 °C Storage Temperature: -40 °C to +75 °C Humidity: _95% at 40 °C Power Requirements: 100, 120, 220V ±10%; 240V +5% -10%; 48 to 66Hz; power consumption 150VA, maximum Probe Cable Length: Approximately 150cm, measured from the front-panel to the probe tip. Dimensions: 426mm (W) x 177mm (H) x 513mm (D) (16.77" x 7" x 20") Weight: Approximately 18 kg. #### **OPTIONS** Option 907: Front handle kit (P/N 5061-0090) Option 908: Rack flange kit (P/N 5061-0078) Option 909: Rack flange and handle kit (P/N 5061-0084) Option 910: Extra Manual Table 1-1. Specifications (Sheet 5 of 5) #### **ACCESSORIES** #### Accessories Supplied: | Part Number | Accessory Name | Q'ty | |-------------|-------------------|------| | 04193-61151 | Probe | 1 | | 04193-61152 | Probe Adapter | 1 | | 04193-61153 | Component Adapter | 1 | | 04193-61154 | Ground Adapter | 1 | | 04193-61629 | Ground Lead | 1 | | 04193-21008 | Probe Socket | 1 | | 0360-2065 | Spare Clips | 3 | | 04193-21023 | Spare N-type Pins | 5 | | 16095-29005 | Spare Pins | 10 | | 04193-60152 | Probe Kit Case | 1 | | 1540-0692 | Pin Case | 3 | #### Accessories Available: 16099A TEST FIXTURE ADAPTER: Connects Probe to one of three test fixtures, Model 16092A/16093A/16093B, for component measurement. 16345A PROBE TYPE CALIBRATION BOX: Contains 10 standards, SHORT/OPEN/ $\begin{array}{lll} 10\Omega/5\,0\Omega/10\,0\Omega/18\,0\Omega/lk\Omega/l.8k\Omega/10k\Omega/5pF,\\ for & calibration & of & probe-type \end{array}$ instruments. 16092A SPRING CLIP FIXTURE: Mounts atop the 16099A TEST FIXTURE ADAPTER. Used for discrete component measurements. 16093A BINDING POST FIXTURE: Mounts atop the 16099A TEST FIXTURE ADAPTER. Used for discrete component measurements. 16093B BINDING POST FIXTURE: Mounts atop the 16099A TEST FIXTURE ADAPTER. Used for discrete component measurements. Table 1-2. General Information #### SUPPLEMENTAL PERFORMANCE CHARACTERISTICS #### MEASUREMENT TIME Normal Mode: High Speed Mode: Approximately 1 sec. (typical) Approximately 150 msec. (typical) FREQUENCY SETTLING TIME Approximately 5ms to 400ms RANGING TIME Approximately 1.2s PROBE WITHSTAND VOLTAGE DC: 50V maximum AC: 5Vrms maximum **OUTPUT IMPEDANCE** Approximately 25 Ω with 0.2 μ F series capacitance #### RESIDUALS Resistance in series with DUT (Rs): $\leq 0.55\Omega$ Inductance in series with DUT (Ls): $\leq (4.9 + \frac{10}{f}) nH^{*2}$ Capacitance in parallel with DUT (Cp):≤0.llpF #### Note *1: DUT includes the probe pin. *2: f is test frequency in MHz. #### TEST SIGNAL LEVEL: | MAGNITUDE RANGE | CURRENT Thru DUT (µArms) | |-----------------|--------------------------| | 10Ω | 100 | | 100Ω | 100 | | 1kΩ | 100 | | 10kΩ | 50 | | 100kΩ | 10 | . Note: Current through the DUT is constant for each magnitude range. Accuracy: ±20% RESIDUAL FM $100 Hz_{P-P}$ for 1 thru 110 MHz at 100 Hz BW. SKIP ERROR 10 counts maximum at 2.5MHz, 5MHz, and 10MHz. Table 1-3. Probe Kit for 4193A | Reference | HP Part Number | Qty | Description | |-----------|----------------|-----|---| | 1 | 04193-61151 | 1 | PROBE | | 2 | 04193-61154 | 1 | GROUND ADAPTER | | 3 | 04193-21008 | 1 | PROBE SOCKET | | 4 | 04193-61152 | 1 | BNC ADAPTER | | (5) | 04193-61153 | 1 | COMPONENT ADAPTER | | 6 | 04193-60153 | 1 | SPARE N-TYPE PIN SET Contains five spare N-type pins (HP Part No.: 04193-21023) | | 9 | 16095-60012 | 1 | SPARE PIN SET Contains ten spare N-type pins (HP Part No.: 16095-29005) | | 8 | 04193-60151 | 1 | SPARE CLIP SET Contains three spare clips (HP Part No.: 0360-2065) | | 9 | 04193-61629 | 1 | GROUND LEAD | | 10 | 04193-60152 | 1 | PROBE KIT CASE | Table 1-4. Accessories Available (Sheet 1 of 3) | Model | Description | |-------------------------------|---| | HPl6092A Spring Clip Fixture | Test Fixture (direct attachment type) for measurement of both axial and radial lead components and lead-less chip elements. Spring clip contacts are capable of holding samples of dimensions given below: | | | ≦18mm
≤2.5mm
≤10mm
2~24mm | | | A combined slide gauge provides direct readouts of the physical length of the sample tested. Usable frequency range is DC to 500MHz. The 16099A Test Fixture Adapter is necessary to connect the 4193A Probe. | | HP16093A Binding Post Fixture | Test Fixture (direct attachment type) for measurement of both axial and radial lead miniature components. Two binding post terminals at an interval of 7mm on the terminal deck ensure optimum contact of terminals and sample leads. | | | 7(mm) 9(mm) | | | Usable frequency range is DC to 250MHz. The 16099A Test Fixture Adapter is necessary to connect the 4193A Probe. | Table 1-4. Accessories Available (sheet 2 of 3) | Model | Description |
--|---| | HP16093B Binding Post Fixture | Test Fixture (direct attachment type) for general measurement of both axial and radial lead components. Three binding post terminals are located on the terminal deck as shown below: | | WAN. | 15(mm)
10.5(mm)
18(mm) | | | Usable frequency range is DC to 125MHz. The 16099A Test Fixture Adapter is necessary to connect the 4193A Probe. | | HP 16099A Test Fixture Adapter | Test Fixture Adapter for connecting the 4193A probe to one of the three available test fixtures—16092A, 16093A, and 16093B. | | TOTAL AND THE PARTY OF PART | Note: The 16099A and each of the available test fixtures must be ordered separately. | | 2 | 1 :HP16092A SPRING CLIP FIXTURE 2 :HP16093A BINDING POST FIXTURE 3 :HP16093B BINDING POST FIXTURE | | | | Table 1-4. Accessories Available (sheet 3 of 3) | Model | Description | |-------------------------------------|---| | HP16345A Probe Type Calibration Box | Calibration standard for performance testing and adjustment of the 4193A. Includes ten probe-insertable standards: OPEN, SHORT, 10Ω, 50Ω, 100Ω, 180Ω, 1kΩ, 1.8kΩ, 10kΩ, and 5pF. If a standard is damaged or fails to perform properly, contact your nearest Hewlett-Packard Sales and Service Office. Dimensions: 310(W)x80(H)x205(D)[mm] | | | Weight: Approximately 2.1kg | # SECTION II #### 2-1. INTRODUCTION 2-2. This section provides installation instructions for the Model 4193A Vector Impedance Meter. This section also includes information on initial inspection and damage claims, preparation for using the 4193A, packaging, storage, and shipment. #### 2-3. INITIAL INSPECTION The 4193A Vector Impedance Meter, as shipped from the factory, meets all the specifications listed in Table 1-1. On receipt, inspect the shipping container for damage. If the shipping container or cushioning material is damaged, notify the carrier as well as the nearest Hewlett-Packard office and be sure to keep the shipping materials for carrier's inspection until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1. The procedures for checking the general electrical operation are given in Section III (Paragraph 3-7 SELF TEST) and the procedures for checking the 4193A Impedance Meter against Vector specifications are given in Section IV. First, do the self test. If the 4193A Vector Impedance Meter is electrically questionable, then do the Performance Tests to determine whether the 4193A has failed or not. If the contents are incomplete, if there is mechanical damage or defects (scratches, dents, broken switches, etc.), or if the performance does not meet the self test or performance tests, notify the nearest Hewlett-Packard office (see list at back of this manual). The HP office will arrange for repair or replacement without waiting for claim settlement. #### 2-5. PREPARATION FOR USE #### 2-6. POWER REQUIREMENTS 2-7. The 4193A requires a power source of 100, 120, 220 Volts ac +10%, or 240 Volts ac +5%-10%, 48 to 66Hz single phase; power consumption is 150 VA maximum. #### WARNING IF THE INSTRUMENT IS TO BE ENERGIZED VIA AN EXTERNAL AUTOTRANSFORMER FOR VOLTAGE REDUCTION, BE SURE THAT THE COMMON TERMINAL IS CONNECTED TO THE NEUTRAL POLE OF THE POWER SUPPLY. #### 2-8. Line Voltage and Fuse Selection #### CAUTION BEFORE TURNING THE 4193A LINE SWITCH TO ON, VERIFY THAT THE INSTRUMENT IS SET TO THE VOLTAGE OF THE POWER TO BE SUPPLIED. 2-9. Figure 2-1 provides instructions for line voltage and fuse selection. The line voltage selection switch and the proper fuse are factory installed for 100 or 120 volts ac operation. #### CAUTION USE PROPER FUSE FOR LINE VOLTAGE SELECTED. #### CAUTION MAKE SURE THAT ONLY FUSES FOR THE REQUIRED RATED CURRENT AND OF THE SPECIFIED TYPE ARE USED FOR REPLACEMENT. THE USE OF MENDED FUSES AND THE SHORT-CIRCUITING OF FUSE-HOLDERS MUST BE AVOIDED. #### 2-10. POWER CABLE 2-11. To protect operating personnel, the National Electrical Manufacturer's Association (NEMA) recommends that the instrument panel and cabinet be grounded. The Model 4193A is equipped with a three-conductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable is the ground wire. 2-12. To preserve the protection feature when operating the instrument from a two contact outlet, use a three prong to two prong adapter (HP Part No. 1251-0048) and connect the green pigtail on the adapter to power line ground. #### CAUTION THE MAINS PLUG MUST ONLY BE INSERTED IN A SOCKET OUTLET PROVIDED WITH A PROTECTIVE EARTH CONTACT. THE PROTECTIVE ACTION MUST NOT BE NEGATED BY THE USE OF AN EXTENSION CORD (POWER CABLE) WITHOUT PROTECTIVE CONDUCTOR (GROUNDING). 2-13. Figure 2-2 shows the available power cords, which may be used in various countries including the standard power cord furnished with the instrument. HP Part number, applicable standards for power plug, power cord color, electrical characteristics and countries using each power cord are listed in the figure. If assistance is needed for selecting the correct power cable, contact the nearest Hewlett-Packard office. #### 2-14. OPERATING ENVIRONMENT 2-15. Temperature. The instrument may be operated in temperatures from 0°C to $+55^{\circ}\text{C}$. 2-16. Humidity. The instrument may be operated in environments with relative humidities to 90% at 40°C. However, the instrument should be protected from temperature extremes which cause condensation within the instrument. #### 2-17. INSTALLATION INSTRUCTIONS 2-18. The HP Model 4193A can be operated on the bench or in a rack mount. The 4193A is ready for bench operation as shipped from the factory. For bench operation a two-leg instrument stand is used. For use, the instrument stands are designed to be pulled towards the front of instrument. 2-19. Installation of Options 907, 908 and 909 2-20. The 4193A can be installed in a rack and be operated as a component of a measurement system. Rack mounting information for the 4193A is presented in Figure 2-3. #### 2-21. STORAGE AND SHIPMENT #### 2-22. ENVIRONMENT 2-23. The instrument may be stored or shipped in environments within the following limits: Temperature -40 °C to +75 °C Humidity to 95% at 40 °C The instrument should be protected from temperature extremes which cause condensation inside the instrument. Figure 2-1. Voltage and Fuse Selection. Figure 2-2. Power Cables Supplied. #### 2-24. PACKAGING 2-25. Original Packaging. Containers and materials identical to those used in factory packaging are available from Hewlett-Packard. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number. - 2-26. Other Packaging. The following general instructions should be used for re-packing with commercially available materials: - a. Wrap instrument in heavy paper or plastic. If shipping to Hewlett-Packard office or service center, attach tag indicating type of service required, return address, model number, and full serial number. - Use strong shipping container. A double-wall carton made of 350 pound test material is adequate. -
c. Use enough shock absorbing material (3 to 4 inch layer) around all sides of instrument to provide firm cushion and prevent movement inside container. Protect control panel with cardboard. - d. Seal shipping container securely. - e. Mark shipping container FRAGILE to ensure careful handling. - f. In any correspondence, refer to instrument by model number and full serial number. | Option | Kit
Part Number | Parts Included | Part Number | Q'ty | Remarks | |--------|--|--|---|-------------|----------| | 907 | Handle Kit
5061-0090 | Front Handle
Trim Strip
X8-32 x 3/8 Screw | 3 5060-9900
• 5020-8897
2510-0195 | 2
2
6 | 9.525mm | | 908 | Rack Flange Kit
5061-0078 | Rack Mount Flange
X8-32 x 3/8 Screw | ② 5020-8863
2510-0193 | 2
6 | 9.525mm | | 909 | Rack Flange &
Handle Kit
5061–0084 | Front handle
Rack Mount Flange
X8-32 x 3/8 Screw | 3 5060-9900
5 5020-8875
2510-0194 | 2
2
6 | 15.875mm | - Remove adhesive-backed trim strips ① from side at right and left front of instrument. - 2. HANDLE INSTALLATION: Attach front handle 3 to sides at right and left front of instrument with screws provided and attach trim 4 to handle. - 3. RACK MOUNTING: Attach rack mount flange (2) to sides at right and left front of instrument with screws provided. - 4. HANDLE AND RACK MOUNTING: Attach front handle 3 and rack mount flange 5 together to sides at right and left front of instrument with screws provided. - 5. When rack mounting (3 and 4 above), remove all four feet (lift bar at inner side of foot, and slide foot toward the bar). Figure 2-3. Rack Mount Kit. # SECTION III OPERATION #### 3-1. INTRODUCTION 3-2. This section provides all the information necessary to operate the Model 4193A Vector Impedance Meter. Included are descriptions of the front- and rear-panels, displays, lamps and connectors; discussions on operating procedures and measuring techniques for various applications; and instructions on the instrument's SELF TEST function. Warnings, Cautions, and Notes are given throughout; they should be observed to insure the safety of the operator and the serviceability of the instrument. #### WARNING INSTRUMENT IS THE **BEFORE** ALL PROTECTIVE SWITCHED ON. TERMINALS, **EXTENSION** EARTH CORDS, AUTO-TRANSFORMERS AND DEVICES CONNECTED TO IT SHOULD BE CONNECTED TO A PROTECTIVE EARTH GROUNDED SOCKET. ANY INTERRUPTION OF THE PROTECTIVE EARTH GROUNDING WILL CAUSE A POTENTIAL SHOCK HAZARD THAT IN SERIOUS COULD RESULT PERSONAL INJURY. ONLY FUSES WITH THE REQUIRED RATED CURRENT AND OF THE SPECIFIED TYPE SHOULD BE USED. DO NOT USE REPAIRED FUSES OR SHORTED FUSEHOLDERS. TO DO SO COULD CAUSE A SHOCK OR FIRE HAZARD. #### **CAUTION** BEFORE THE INSTRUMENT IS SWITCHED ON, IT MUST BE SET TO THE VOLTAGE OF THE POWER SOURCE (MAINS), OR DAMAGE TO THE INSTRUMENT MAY RESULT. #### 3-3. OPERATING INSTRUCTIONS the Operating instructions for 3-4. instrument's basic capabilities are given in Operating paragraphs 3-5 through 3-44. the instrument's extended instructions for capabilities (remote operation via the HP-IB, X-Y Recorder Outputs, and External Oscillator) are covered in paragraphs 3-45 through 3-80. #### 3-5. PANEL FEATURES 3-6. Front- and rear-panel features for the 4193A are described in Figure 3-1 and Figure 3-2, respectively. More detailed information on the panel displays and controls is given in paragraph 3-7 and below. #### 3-7. SELF TEST The 4193A is equipped with an automatic 3-8. self-diagnostic function that can be initiated at any time to confirm normal operation of the instrument's basic functions. SELF TEST can be initiated from the front-panel by pressing the SELF TEST key or via HP-IB remote control (program code Sl). When SELF TEST is initiated (key indicator lamp is on), eight tests of the instruments digital section are performed and the results (pass code or one of the error codes listed in Table 3-5) are displayed on the FREQUENCY display. If no errors are detected, pass codes Pl through P7, P40, and PASS will be sequentially displayed on the FREQUENCY display and the instrument will then return to normal measurement mode (SELF TEST key indicator lamp off). If an error is detected, the error corresponding code--listed in 3-5-will be displayed on the FREQUENCY display and SELF TEST will stop. Error code E-61 is not an instrument failure. Refer to Table 3-3 for the cause and remedy. If the instrument fails SELF TEST (an error code other than E-61 is displayed), contact the nearest Hewlett-Packard Service Office. A list of addresses is provided at the back of this manual. #### Note abbreviated SELF TEST automatically performed each time the instrument is turned on. Only error codes--if an is error detected--PASS or FAIL, and the address HP-IB are instrument's displayed at the end of this SELF TEST. - ① HP-IB Status Indicators and LOCAL Key: These four LED lamps -- SRQ, LISTEN, TALK, and REMOTE -- indicate the status of the 4193A when it is interfaced with and under the control of a controller via the HP-IB. - The LOCAL key, when pressed, releases the instrument from REMOTE (HP-IB) control and enables control via the front-panel. The LOCAL key does not function when the instrument is set to "local lockout" by the controller. - NOT READY Lamp: Indicates that the RF test signal is unstable or that the measured value exceeds the magnitude range limit. - EXT OSC Lamp: Comes on when an external signal source is connected to the EXT OSC connector on the rear-panel. - Trigger Lamp: Comes on each time the instrument is internally or manually triggered. Measurement is in progress when the lamp is on. Trigger mode is set by the TRIGGER keys (5). - MAGNITUDE Display: Displays absolute values of vector impedance (|Z|) in a maximum 3-1/2 digit decimal number from 0000 to 1999 (actual number of digits depends on the |Z| range). If the measured |Z| value exceeds the range limit, an alphabetic annunciation (|Z| N, where N represents the range number) will appear on this display. - Unit Indicator Lamps: Indicates the unit for the displayed magnitude value: $k\Omega$ or Ω . - PHASE Display: Displays the measured phase angle (θ) in four digits. The range is from 000.0 to +180.0 degrees. If " [] ,- N" (where N represents the |Z| range number) appears on the MAGNITUDE display, "- - -" is displayed on this display. - FREQUENCY Display: Displays, in MHz, the spot test frequency, and swept frequency parameters (START and STOP frequencies). When the instrument is turned on, various SELF TEST messages and HP-IB address are sequentially displayed on this display. - SELF TEST Key and Indicator: This key initiates the instrument's SELF TEST function. During SELF TEST (when the indicator is on), eight tests, which check the basic operation of the instrument, are automatically performed. Pass codes and error messages are displayed on the FREQUENCY display (1). When the SELF TEST is completed, the indicator goes off and the instrument is returned to normal measurement mode. A brief discription of each test and the meaning of each error message is given in paragraph 3-28. - (10) X-Y RECORDER Function Keys: These keys control the instrument's analog output capability. Voltage proportional to the measurement results is output from the X-Y RECORDER OUTPUT connectors on the rear-panel. - ON: Analog data representing the measured impedance and phase values and the test frequency are output from the X-Y RECORDER OUTPUT connectors on the rear-panel. Indicator lamp is on in this state. - OFF: No analog data are output, and X-Y RECORDER zero- and full-scale adjustments can be made. Indicator lamp is off in this state. - INTRPL: Linear interpolation. Smooths curves plotted on the X-Y Recorder. - Provides the zero reference voltage (0V) from each rear-panel X-Y RECORDER OUTPUT connector. Used for zero positioning of the recorder pen. When this key is pressed, the recorder pen will be positioned at the lower-left (X and Y zero) of the plot area. - Provides the full-scale reference voltage (1V) from each rear-panel X-Y RECORDER OUTPUT connector. Used for full-scale positioning of the recorder pen. When this key is pressed, the recorder pen will be positioned at the upper-right (X and Y maximum) of the plot area. - (1) LINE OFF/ON: Applies ac line power to the instrument when set to the ON (in) position; removes ac line power when set to the OFF (out) position. - PROBE Connector: Probe cable connects to this connector. MAGNITUDE RANGE Keys: These keys are used to select the measurement range. When indicator lamp is on, optimum range for the DUT's impedance is AUTO: automatically selected. MANUAL: When the AUTO indicator lamp is off, these keys are used to select the measurement range. Once selected, the range will not change even if the sample is changed. Manual ranging is done by pressing the DOWN (♠) key or the UP (♠) key. HIGH SPEED MODE Key: Shortens the measurement time and increases the measurement cycle speed. TRIGGER Keys: These keys select the trigger mode. INT: Measurement is triggered by the instrument's internal trigger signal. MAN/EXT: Measurement is triggered each time this key is pressed, and measurement data are held until the next time the key is pressed. Or the 4193A is triggered by an external trigger. Note An external trigger signal can be applied from the rear panel connector. External triggering is performed at the trailing edge of the applied TTL pulse. See paragraph 3-32. - FREQ. RESOLUTION Keys: Sets the incremental/decremental value for frequency changes made with the Test Frequency Control Dial (1). Incremental/decremental value for COARSE, MED, and FINE is 100 counts, 10 counts, and 1 count, respectively. - Test Frequency Control Dial: Changes the test frequency. Rotating the dial clockwise increases the frequency; rotating it counterclockwise
decreases the frequency. (19) STEPS Kevs: These keys select the number of measurement points for a partial swept-frequency measurement. When the 100 key is pressed, measurement is made at 100 points from the selected START frequency to the selected STOP frequency. The 1000 key functions similarly to the 100 key. The HIGH RESOLUTION key automatically selects the optimum STEP frequency resolution for each frequency range. Refer to Figure 3-4 for details. Note There are certain restrictions related to STEP frequency selection; refer to Figure 3-4. - FULL SWEEP START/ABORT Key: Starts and stops full-range (400kHz to 110MHz) swept frequency measurements. When this key is pressed, the indicator lamp comes on and the sweep begins. When this key is pressed during swept measurement (indicator lamp on), the sweep stops at the last frequency step. - 21 PARTIAL SWEEP START/ABORT Key: Starts and stops partial swept frequency measurements. When this key is pressed, the indicator lamp comes on and the sweep begins. When this key is pressed during swept measurement (indicator lamp on), the sweep stops at the last frequency step. - 20 ENTER Key: This key is used in conjunction with the adjacent START FREQ. and STOP FREQ. keys (2) to enter the START and STOP frequencies for partial sweeps. When this key is pressed, the indicator lamp comes on and the value displayed on the FREQUENCY display is entered when the START FREQ. key or STOP FREQ. key is pressed. - 3 START FREQ and STOP FREQ Keys: These keys are used in conjunction with the adjacent ENTER key (2) to enter the START and STOP frequencies for partial sweeps. When either of these keys are pressed while the ENTER key indicator lamp is on, the value displayed on the FREQUENCY display is entered; when pressed while the ENTER key indicator lamp is off, the previously entered START FREQ. or STOP FREQ. is displayed on the FREQUENCY display. - 1) HP-IB Control Switch: Seven-bit DIP switch for setting the instrument's HP-IB address (0-30), data output format, and HP-IB function (Talk Only or Addressable). Details are given in paragraphs 3-61 and 3-62. - 2 HP-IB Connector: Twenty-four pin connector; connects to an HP-IB compatible controller or strip recorder. Pin assignments are shown in Figure 3-18. - (3) RECORDER OUTPUTS: Three of these four BNC connectors output voltages proportional to displayed MAGNITUDE, PHASE, and FREQUENCY, and can be connected to an X-Y Recorder to plot impedance/frequency or phase/frequency characteristics. The fourth connector outputs a TTL level DC voltage for X-Y Recorder pen-lift control. - 4 EXT OSC Connector: This connector can be connected to an external frequency synthesizer to obtain higher resolution. Input signal level must be between 0dBm and +5dBm, inclusive. - 5 EXT TRIGGER Connector: For external triggering; an external triggering device or signal can be connected to this connector. Details are provided in paragraph 3-32. - Serial Number Plate: The instrument's serial number is stamped on this plate. Refer to paragraph 1-17. - ↑ LINE VOLTAGE SELECTOR Switch: This switch is used to select the appropriate line voltage. Refer to paragraph 2-8. - ↑ LINE Input Receptacle: AC power cord is connected to this receptacle. Refer to paragraph 2-10. ## 3-9. INITIAL CONTROL SETTINGS 3-10. To facilitate operation, the instrument is automatically set to the following initial control settings each time it is turned on: #### Panel Controls: | MAGNITUDE RANGE ······ AUTO | |-----------------------------| | HIGH SPEED OFF | | TRIGGERINT | | FREQUENCY RESOLUTION FINE | | | | ENTER OFF | | STEPS100 | | PARTIAL SWEEP OFF | | FULL SWEEP OFF | | SELF TEST OFF | | X-Y RECORDER ON/OFF OFF | | | | INTERPOLATION OFF | #### Test Parameters: | SPOT | FREQ. ······ | ••••• 10 M Hz | |------|--------------|---------------| | STAR | T FREQ | •••••••4 M Hz | | STOP | FREQ | 110 M Hz | | RECO | RDER OUTPUTS | V | #### 3-11. MEASUREMENT RANGE ## 3-13. TEST SIGNAL LEVEL 3-14. The test signal current through the DUT is constant for the selected measurement range. Refer to Table 3-1. Accordingly, the voltage across the DUT depends on the DUT impedance. ## 3-15. TEST FREQUENCY 3-16. There are three test frequency ranges, as listed in Table 3-2. Frequency accuracy is 0.01% of the value displayed on the FREQUENCY display. Refer to Figure 3-3 for the frequency setting procedure. Table 3-1. Measurement Range and Test Signal Level | Magnitude Range | Full-scale Counts | Resolution | Test Signal Level | |--------------------|-------------------|----------------------|-------------------| | (1) 10Ω | 19.99 Ω | $1\mathrm{Om}\Omega$ | 100μArms | | (2) 100 Ω | 199.9 Ω | 100mΩ | 100µArms | | (3) 1k Ω | 1.999kΩ | 1Ω | 100μArms | | (4) $10k\Omega$ | 19.99kΩ | 10Ω | 50µArms | | (5) 100kΩ | 119. kΩ | 1kΩ | 10μArms | ## 3-17. SWEPT FREQUENCY MEASUREMENTS 3-18. The 4193A is capable of two types of frequency sweeps: PARTIAL, from the selected START frequency to the selected STOP frequency; and FULL, from 400kHz to 110MHz. #### 3-19. PARTIAL SWEEP MEASUREMENT 3-20. PARTIAL sweep measurements are used to determine the impedance/phase versus frequency characteristics of a sample over a preselected frequency range. For example, the pass band of a band-pass filter. The test frequency is linearly swept from the selected START frequency to the selected STOP frequency and measurement is made at the number of steps selected by the STEPS keys--100, 1000, or HIGH RES. When HIGH RES is selected, the test frequency is swept (incremented) in accordance with the selected FREQUENCY RESOLUTION key--COARSE, MED, or FINE. The HIGH RES key provides higher step frequency resolution than is possible with the 100 or 1000 STEPS key. For example, if the START frequency is 5MHz, the STOP frequency is 10MHz, and the 1000 STEPS key is selected, measurement is made at 1000 frequency points, which corresponds to a step frequency of 5kHz. But if HIGH RES is used and the FINE key is selected, measurement is made at 5000 frequency points, corresponding to a step frequency of lkHz. With HIGH RES on, FINE is automatically selected when the PARTIAL SWEEP START/ABORT key is pressed. COARSE or MED can be selected during the sweep. When 100 or 1000 STEPS is selected, the FREQUENCY RESOLUTION keys do not function. procedure for making a PARTIAL sweep measurement is given in Figure 3-4. #### 3-21. FULL SWEEP MEASUREMENT 3-22. In FULL sweep measurements the test frequency is logarithmically swept over the 4193A's full frequency range and measurement is made at 43 frequency points. Refer to Figure 3-5 for the frequency of each measurement point. A FULL sweep takes approximately 50 seconds in NORMAL speed mode and 15 seconds in HIGH SPEED mode. The procedure for making a FULL sweep measurement is given in Figure 3-5. Table 3-2. Test Frequency Range | Test Frequency Range | Resolution | |----------------------|------------| | .400 to 9.999MHz | 1kHz | | 10.00 to 99.99MHz | 10kHz | | 100.0 to 110.0MHz | 100kHz | ## SPOT FREQUENCY SETTING PROCEDURE To manually change the spot frequency, use the procedure given below: #### PROCEDURE: - l. Press the FREQUENCY RESOLUTION key labelled COARSE. The indicator lamp in the ceter of the key will come on. - Rotate the FREQUENCY dial (clockwise to increase the frequency, counterclockwise to decrease the frequency) until the two left-most digits of the displayed frequency are at the desired setting. - 3. Press the MED key. The indicator lamp in the center of the key will come on. - 4. Rotate the FREQUENCY dial until the second digit from the right is at the desired setting. - 5. Press the FINE key. The indicator lamp in the center of the key will come on. - 6. Rotate the FREQUENCY dial until the right-most digit is at the desired setting. ## **EXAMPLE** Refer to the figure. The desired spot frequency is 55.55MHz. - l. Press the COARSE key (1). - 2. Rotate the FREQUENCY dial 4 clockwise until the two left-most digits 5 of the displayed frequency are 55. - 3. Press the MED key (2). - 4. Rotate the FREQUENCY dial 4 clockwise until the second digit from the right (i) is 5. - 5. Press the FINE key (3). - 6. Rotate the FREQUENCY dial 4 clockwise until the right-most digit 1 is 5. Figure 3-3. Spot Frequency Setting Procedure. #### PARTIAL SWEEP MEASUREMENT To make a PARTIAL sweep measurement, use the procedure given below: #### PROCEDURE: - 1. Connect the probe to the sample. - 2. Select the desired START frequency. Refer to Figure 3-3 for the procedure. - 3. Press the ENTER key. The indicator lamp in the center of the key will come on. - 4. Press the START FREQ. key. The ENTER key indicator lamp will go off. - 5. Select the desired STOP frequency. Refer to Figure 3-3 for the procedure. - 6. Press the ENTER key. The indicator lamp in the center of the key will come on. - 7. Press the STOP FREQ. key. The ENTER key indicator lamp will go off. - 8. Press the 100, 1000, or HIGH RES STEPS key to select the number of measurement points. Refer to paragraph 3-19. - 9. Press the PARTIAL SWEEP START/ABORT key to start the sweep. The indicator lamp in the center of the key will come on. To stop the sweep, press the PARTIAL SWEEP START/ABORT key. The indicator lamp will go off and the sweep will stop immediately. #### Note If the STOP frequency is lower than the START frequency, E-80 will be displayed on the FREQUENCY display when the PARTIAL SWEEP START/ABORT key is pressed. #### Note If the step frequency is too low for the selected frequency range, the 4193A automatically selects an acceptable step frequency. If, for example, the START frequency is 500kHz, the STOP frequency is 600kHz, and 1000 STEPS is selected, the 4193A automatically selects 100 steps. The 1000 STEPS indicator lamp remains on, however. This automatic adjustment can also occur during a sweep when the frequency is swept over a frequency resolution change point; that is, 10MHz and 100MHz. #### Note Manual PARTIAL
sweep can be performed by presing the MANUAL TRIGGER key. #### FULL SWEEP MEASUREMENT To make a FULL sweep measurement, use the procedure given below: #### PROCEDURE: - l. Connect the probe to the sample. - 2. Press the FULL SWEEP START/ABORT key. The indicator lamp in the center of the key will come on and the sweep will begin. To stop the sweep, press the FULL SWEEP START/ABORT key. The indicator lamp will go off and the sweep will stop immediately. The FULL sweep measurement points are listed below: 400kHz, 455kHz, 500kHz, 600kHz, 700kHz, 800kHz, 900kHz, 1MHz, 1.2MHz, 1.4MHz, 1.6MHz, 1.8MHz, 2MHz, 2.333MHz, 2.666MHz, 3MHz, 3.5MHz, 4MHz, 4.5MHz, 5MHz, 6MHz, 7MHz, 8MHz, 9MHz, 10MHz, 12MHz, 14MHz, 16MHz, 18MHz, 20MHz, 23.33MHz, 26.66MHz, 30MHz, 35MHz, 40MHz, 45MHz, 50MHz, 60MHz, 70MHz, 80MHz, 90MHz, 100MHz, 110MHz. Figure 3-5. FULL Sweep Measurement. #### 3-23. DISPLAYS 3-24. The 4193A has three display sections: MAGNITUDE, PHASE, and FREQUENCY. They are described in paragraphs 3-25 through 3-27, respectively. 3-25. The MAGNITUDE display provides direct readout of measured impedance magnitude with 3 1/2-digit display resolution. The actual number of display digits depends on the measurement range. Maximum number of counts on the 10Ω , 100Ω , $1k\Omega$, and $10k\Omega$ ranges is 1999, and 120 on the $100k\Omega$ range. The least significant digit on the $100k\Omega$ range may be displayed as " indicating that the least significant digit is meaningless. Five over-range annunciations are also displayed on this display. Refer to Table 3-4. 3-26. The PHASE display provides direct readout of measured phase angle with $3 \, 1/2$ -digit display resolution. Maximum number of counts is 1800. When measurement is made on the $100 \, \mathrm{k}\Omega$ range, the least significant digit of measured phase values may be displayed as " indicating that the least significant digit is meaningless. Also, when an over-range occurs on the MAGNITUDE display or when the measured magnitude is less than 20 counts, "---" will be displayed on the PHASE display. 3-27. The FREQUENCY display provides direct readout of SPOT, START, and STOP frequencies with 4-digit display resolution. Error-codes related to mis-operation and instrument failure are also displayed here. Refer to paragraph 3-28. ## 3-28. Error-Code and Over-range Annunciations 3-29. Error-codes related to mis-operation and over-range annunciations are listed, along with a brief description, in Tables 3-3 and 3-4, respectively. Error codes related to SELF TEST and instrument failure are listed in Table 3-5. If an error listed in Table 3-5 should occur, contact the nearest Hewlett-Packard Sales/Service Office. #### 3-30. INITIAL DISPLAY TEST 3-31. All display segments and indicator lamps are lit for approximately one second each time the instrument is turned on. If a display segment or indicator lamp fails to light or does not light properly, it must be replaced. Table 3-3. Operational Error-codes | Error-code | Meaning | |------------|--| | E - S I | Lower-left key () or upper-right key () was pressed or selected via the HP-IB with the X-Y RECORDER function set to ON and TRIGGER set to INT. | | E - B 1 | The HP-IB Address Control Switch is set to address 31 (11111). Only addresses 0 (00000) through 30 (11110) are allowed. | | E - 8 D | STOP FREQ. is lower than the START FREQ. in PARTIAL SWEEP operation. | Table 3-4. Annunciations | MAGNITUDE
Display | PHASE
Display | Meaning | Treatment | |----------------------|------------------|---|--| | 0 r 1 | | Measured impedance magnitude value exceeds the upper limit of 10Ω range (Range 1). | Change the MAGNITUDE range to range 2. | | 0r 2 | | Measured impedance magnitude value exceeds the upper limit of 100Ω range (Range 2). | Change the
MAGNITUDE
range to 3. | | 0r 3 | | Measured impedance magnitude value exceeds the upper limit of $1k\Omega$ range (Range 3). | Change the
MAGNITUDE
range to 4. | | <i>8-</i> 4 | | Measured impedance magnitude value exceeds the upper limit of $10k\Omega$ range (Range 4). | Change the MAGNITUDE range to 5. | | Dr 5 | | Measured impedance magnitude value exceeds the upper limit of $100 k \Omega$ range (Range 5). | | Table 3-5. SELF TEST Error-codes | | Table 5-5. SELF TEST EFFOr-codes | |---------|--| | Code | Description | | E - 0 1 | Al7Ul (RAM) is faulty. | | E - 02 | A17U2 (RAM) is faulty. | | E - D 3 | Al7U3 (ROM) is faulty. | | E - D 4 | A17U4 (ROM) is faulty. | | E - D S | A17U5 (ROM) is faulty. | | E - 8 8 | Al7U6 (ROM) is faulty. | | E - D 7 | Al7U7 (ROM) is faulty. | | E - 3 O | Al3 Detection board is not functioning properly. | | E - 40 | Al4 ADC board is not functioning properly. | | E - 4 1 | Al7 Control Logic board is not functioning properly. | | E - 60 | Al6 HP-IB board is not functioning properly. | | E - 70 | Al7 Control Logic board is not functioning properly. | | E - 7 / | Al7 Control Logic board is not functioning properly. | #### 3-32. EXTERNAL TRIGGERING 3-33. The 4193A can be externally triggered by connecting a trigger device to the EXT TRIGGER connector on the rear-panel. The instrument is triggered (measurement is made) each time a low-going TTL level pulse is applied to this connector or each time the center conductor is shorted and opened to ground. The instrument must be set to the MAN/EXT trigger mode for external trigger operation. Figure 3-6. External Trigger Pulse. ## 3-34. MEASUREMENT TIME 3-35. Measurement time for a given DUT is approximately is in normal speed mode and 150ms in high speed mode, with the X-Y RECORDER off and the test frequency constant. Additional time is required when the test frequency is changed, the DUT is changed, or the measurement range is changed. Refer to Table 3-6 for typical values. Table 3-6. Additional Measurement Times | | Typical Time | Remarks | |---------------------|----------------------|-------------------------------| | Freq. Settling Time | 100ms (5ms to 400ms) | Changing frequency. | | Wait Time | 200ms | Changing DUT. | | Ranging Time | 1.2s | Ranging up or down one range. | ## 3-36. USE OF FURNISHED PROBE ADAPTERS 3-37. Four probe adapters are furnished to facilitate connection to a wide range of DUT types. Each probe adapter is listed in Table 3-7. Table 3-7. Furnished Probe Adapters | Adapter | HP Part No. | |-------------------|-------------| | BNC Adapter | 04193-61152 | | Component Adapter | 04193-61153 | | Ground Adapter | 04193-61154 | | Probe Socket | 04193-21008 | 3-38. The BNC Adapter is provided for input and output impedance measurements on circuits equipped with BNC female connectors. The Component Mounting Adapter is used for measurements on discrete axial- or radial-lead component. The Probe Socket is for user-fabricated test fixtures, as shown in Figure 3-7. It is available for supporting the probe, which is attached to the user-built fixture and is connected to ground. Figure 3-7. Probe Socket Usage. #### 3-39. PROBE 3-40. The instrument is adjusted to meet the specifications listed in Table 1-1, with the furnished probe connected. If the probe (HP P/N 04193-61151) is replaced or repaired, the adjustments described in Section VIII must be performed. For information on probe replacement or repair, contact the nearest Hewlett-Packard Sales/Service Office. #### CAUTION DO NOT CONNECT THE PROBE TO A COMPONENT OR CIRCUIT THAT HAS A DC BIAS EXCEEDING 50V OR AN AC VOLTAGE EXCEEDING 5V RMS. TO DO SO MAY DAMAGE THE INSTRUMENT. #### Note To ensure measurement accuracy, make sure that the coupling nuts, probe barrel, and probe tip are firmly tightened. ## 3-41. Probe and Test Fixture Residuals 3-42. The equivalent circuit of the 4193A's measurement port is shown in Figure 3-8. All measured values displayed on the MAGNITUDE and PHASE displays include the residuals of the probe and the test fixture. Typical values of each residual are listed in Table 3-8. 3-43. The conductive component of the open-circuit admittance of the equivalent circuit shown in Figure 3-8 is sufficiently larger than the susceptive component, c, at the frequencies below 110MHz to be negligible. Figure 3-8. Equivalent Circuit. 3-44. Residuals compensation can be made using the following procedure: - (1). Connect nothing to the test fixture (or probe) and note the value displayed as Zo. - (2) Short the test fixture (or probe) and note the value displayed as Zs. - (3) Calculate the DUT's actual impedance using the equation given in Figure 3-9. Table 3-8. Typical Residuals at 100MHz | PROBE AND TEST FIXTURE | R
(Ω) | L
(nH) | C
(pF) | |-------------------------|----------|-----------|-----------| | DDODE + 16000A | | | 12. | | PROBE + 16099A | 10.5 | 1 10 1 | 2.4 | | DDODE LAGGORA LOCAL | | | | | PROBE + 16099A + 16092A | 0.5 | 11 | 3.5 | | 00000 | | | | | PROBE + 16099A + 16093A | 0.5 | 12 | 4.2 | | | | | | | PROBE + 16099A + 16093B | 0.5 | 12 | 7.9 | | | 0.0 | | 7.31 | Zm =measured impedance, Zs =short-circuit impedance, Zo =open-circuit impedance, Zx =DUT impedance. $$|Zx| = \sqrt{R^2 + \chi^2}$$ $\theta = \tan^{-1} \frac{\chi}{R}$ where: $$R = \frac{\left(\left|Z_{0}\right| \cos\theta m - \left|Zm\right| \cos\theta_{0}\right) \cdot \left|Zm\right| \cdot \left|Z_{0}\right|}{\left(\left|Z_{0}\right| \cos\theta m - \left|Zm\right| \cos\theta_{0}\right)^{2} + \left(\left|Zm\right| \sin\theta_{0} - \left|Z_{0}\right| \sin\theta m\right)^{2}} - \left|Zs\right| \cos\theta s$$ $$X = \frac{\left(\left|Z_{0}\right| \sin\theta m - \left|Zm\right| \sin\theta_{0}\right) \cdot \left|Zm\right| \cdot \left|Z_{0}\right|}{\left(\left|Z_{0}\right| \cos\theta m - \left|Zm\right|
\cos\theta_{0}\right)^{2} + \left(\left|Zm\right| \sin\theta_{0} - \left|Z_{0}\right| \sin\theta m\right)^{2}} - \left|Zs\right| \sin\theta s$$ $|\textbf{Z}_0|$ and $\theta_0\colon$ Open circuit impedance and phase, respectively. |Zs| and θs : Short circuit impedance and phase, respectively. Note These equations assume that $Z_0 >> Z_S$. Figure 3-9. Residuals Compensation. ## 3-45. EXTERNAL OSCILLATOR 3-46. An external signal source (output impedance: 50Ω ± 10%) can be connected to the EXT. OSC. connector on the rear-panel to obtain higher test signal resolution than is possible with the 4193A's internal signal source. This feature makes it possible to measure high-Q devices such as crystals. A maximum test signal resolution of 100Hz is possible when an external signal source is used. The external oscillator controls frequency only; the 4193A controls the level of the test signal applied to the DUT. The level of the external signal must be from 0 to When the external signal source is connected to the 4193A, the EXT. OSC. indicator comes lamp on the front-panel automatically. The difference between 4193A's test signal frequency setting and that of the external signal source's should not exceed 10MHz. For best results the 4193A's test signal frequency should be set as close as possible to that of the external signal source. #### 3-47, X-Y RECORDER OUTPUT 3-48. The 4193A is equipped with three analog output connectors on the rear-panel (MAGNITUDE, PHASE, FREQUENCY) which output DC voltages proportional to the displayed magnitude, phase, and frequency values. These connectors can be connected to an X-Y Recorder to plot the impedance/frequency or phase/frequency characteristics of the sample impedance. A PEN LIFT connector is also provided for use with X-Y Recorders equipped with remote pen-lift control. ## 3-49. ANALOG MAGNITUDE OUTPUT 3-50. DC voltage output from the MAGNITUDE connector is proportional to the number of counts displayed on the MAGNITUDE display. Output voltage is calculated as: $$V_{M} = \frac{C_{M}}{2000} \text{ (Volts)}$$ where V_M is the analog output voltage and C_M is the number of counts displayed on the MAGNITUDE display. When C_M is 2000 counts (full-scale), for example, V_M is +1 volt. MAGNITUDE output voltage range is 0 to 1 volt. #### Note If the sample's impedance is higher than the full-scale limit of the selected range, $\Omega = 1000$ N (N represents the magnitude range; 1 = 1000 range, 2 = 10000 range, 3 = 1000 range, 4 = 1000 range, 5 = 1000 $100k\Omega$ range) will be displayed on the MAGNITUDE display and the analog output voltage will be $l\ volt.$ #### 3-51. ANALOG PHASE OUTPUT 3-52. DC voltage output from the PHASE connector is proportional to the number of counts displayed on the PHASE display. Output voltage is calculated as: $$Vp = \frac{Cp}{1800}$$ (Volts) where Vp is the analog output voltage and Cp is the number of counts (with sign) displayed on the PHASE display. When Cp is 1800 counts (full-scale positive), for example, Vp is +1 volt; conversely, when Cp is -1800 counts (full-scale negative), Vp is -1 volt. PHASE output voltage range is 0 to ±1 volt. #### Note The above equation is valid even when "---" is displayed on the PHASE display. The last valid phase value is used for Cp in this case. ## 3-53. ANALOG FREQUENCY OUTPUT 3-54. DC voltage output from the FREQUENCY connector is proportional to the displayed frequency, but is different for each sweep mode. Output voltage is calculated as: For PARTIAL SWEEP: $$V_{F} = \frac{f_{SPOT}^{-f}_{START}}{f_{STOP}^{-f}_{START}}$$ (Volts) For FULL SWEEP: $$V_{F} = \frac{\log(f_{SPOT}/f_{START})}{\log(f_{STOP}/f_{START})} \text{ (Volts)}$$ where V_F is the analog output voltage and f_{SPOT} , f_{START} , and f_{STOP} are, respectively, the test frequency displayed the FREQUENCY display, the sweep START frequency, and the sweep STOP frequency. All frequencies are in MHz. #### Note When neither sweep mode is selected (SPOT Measurement), the output voltage is calculated using the PARTIAL SWEEP equation. #### IN-CIRCUIT IMPEDANCE MEASUREMENT #### SETUP: Attach the furnished slide-on ground adapter (HP Part No.: 04193-61154) to the probe barrel, as shown in the figure. #### PROCEDURE: - Turn on the instrument and verify that it passes the initial display test and that "PASS" is displayed on the FREQUENCY display at the completion of the SELF TEST. - 2. Set the desired test frequency by rotating the Frequency Control Dial, as described in Figure 3-3. - 3. Connect the probe center pin and the ground pin to the sample circuit terminals as shown above. If the ground pin is too short to reach the sample circuit's ground terminal, use the furnished ground lead (HP Part No.: 04193-61629), as shown below: ## CAUTION DO NOT CONNECT THE PROBE TO A CIRCUIT THAT HAS A DC BIAS EXCEEDING 50V OR AN AC VOLTAGE EXCEEDING 5V RMS. TO DO SO MAY DAMAGE THE INSTRUMENT. #### Note The circuit terminal distance should be as short as possible. #### Note The residual impedance of the ground adapter is less than that of the ground lead. #### Note The probe pin (HP Part No.: 16095-60012) and the ground pin (HP Part No.: 0360-2066) are replaceable. Figure 3-10. In-circuit Impedance Measurement Procedure. # GENERAL COMPONENT MEASUREMENT #### SETUP: Attach the furnished component adapter (HP Part No.: 04193-61153) to the end of the probe, as shown in the figure. ## PROCEDURE: - Turn on the instrument and verify that it passes the initial display test and that "PASS" is displayed on the FREQUENCY display at the completion of the SELF TEST. - 2. Set the desired test frequency by rotating the Frequency Control Dial, as described in Figure 3-3. - 3. Connect the DUT between the center terminal and one of the outer terminals of the component adapter, as shown in the figure. - 4. Read the measured impedance and phase displayed on the MAGNITUDE and PHASE displays, respectively. #### CAUTION DO NOT CONNECT THE PROBE TO A COMPONENT THAT HAS A DC BIAS EXCEEDING 50V OR AN AC VOLTAGE EXCEEDING 5V RMS. TO DO SO MAY DAMAGE THE INSTRUMENT. #### Note The component adapter dimensions are shown below. The terminals (HP Part No.: 04193-60151) are replaceable. For measurement of components that cannot be connected to the component adapter, the 16092A/16093A/16093B test fixtures are available. Refer to Table 1-4. Figure 3-11. General Component Measurement Procedure. ## EXTERNAL OSCILLATOR USAGE To EXT OSC Terminal on rear-panel ## **EQUIPMENT:** Synthesized Signal GeneratorGenerator with 86633B and 8660lB TYPE N (male)-BNC (female) Adapter HP P/N:1250-1535 BNC (male)-BNC (male) Cable HP 10503A #### PROCEDURE: - l. Turn off both instruments. - 2. Connect the synthesizer's RF section to the 4193A's EXT. OSC. connector, as shown in the figure. - 3. Set the synthesizer's output level to 0dBm. ## Note DO NOT allow the synthesizer's output level to exceed +5dBm. To do so may damage the 4193A. - 4. Turn on both instruments. - 5. Confirm that the EXT. OSC. indicator lamp on the 4193A's front-panel comes on after completion of the initial SELF TEST. - 6. Connect the probe to the device or circuit under test and set the instruments' controls as appropriate for the measurement. For best results, set the 4193A's test frequency as close as possible to the synthesizer's frequency. #### Note The maximum allowable difference between the 4193A's test frequency setting and the external synthesizer's setting is $10\,\mathrm{MHz}$. #### Note Maximum obtainable frequency resolution for measurements using an external frequency synthesizer is approximately $100\,\mathrm{Hz}$ over the $4193\,\mathrm{A}$'s full frequency range, $400\,\mathrm{kHz}$ to $110\,\mathrm{MHz}$. ## X-Y RECORDER SETUP ## **EQUIPMENT:** X-Y RECORDER HP 7046A BNC (male)-Dual Banana Plug Cable HPll001A (4 ea.) #### **PROCEDURE** - Turn off the 4193A's X-Y RECORDER function--X-Y RECORDER ON/OFF indicator lamp should be off. - 2. Locate the 4193A's X-Y RECORDER OUTPUTS on the rear-panel (see Figure 3-2) and connect FREQUENCY to the recorder's X-axis, MAGNITUDE to the Y1-axis, PHASE to the Y2-axis, and PEN LIFT to the recorder's REMOTE PEN jack (rear-panel). - 3. Place the chart paper on the recording platen and set the CHART switch to the HOLD Position. PEN switch should be set to LIFT. - 4. Press the LL key on the 4193A and, referring to Figure A, position pen 1 at the black dot (*) and pen 2 at the cross (x). - 5. Press the UR hey on the 4193A and, referring to Figure A again, position both pens at the circle (o). Figure A. Plot Area of RECORDER OUTPUTS. #### Note On some X-Y Recorders, zero and full-scale adjustments may be interactive. Repeat steps 4 and 5, if necessary. - 6. Connect the probe to the device or circuit under test and set the 4193A's controls as appropriate for the measurement. - 7. Perform one swept measurement with the X-Y RECORDER function set to OFF and note the measurement range at which the DUT's impedance is highest. - 8. Using the MANUAL MEASUREMENT RANGE keys, \odot and \odot , set the 4193A's measurement range to the range noted in step 7. - 9. Press the X-Y RECORDER ON/OFF key--indicator lamp will come on--and press the PARTIAL SWEEP or FULL SWEEP key to start the plot. #### Note The above procedure is for 2-pen recorders equipped with remote pen-lift control. For single-pen recorders and recorders not equipped with remote pen-lift control, the above procedure must be modified slightly. Figure 3-13. X-Y Recorder Usage Procedure. ## 3-55. HP-IB COMPATIBILITY 3-56. The 4193A can be remotely controlled via the HP-IB, a carefully defined instrument interface which simplifies integration of instruments and a calculator or computer into a system. #### Note HP-IB is Hewlett-Packard's implementation of IEEE Std. 488, Standard Digital Interface for Programmable Instrumentation. # 3-57. HP-IB INTERFACE CAPABILITIES 3-58. The 4193A has eight HP-IB
interface functions, as listed in Table 3-9. ## 3-59. CONNECTION TO HP-IB 3-60. The 4193A can be connected into an HP-IB bus configuration with or without a controller (i.e., with or without an HP calculator). In an HP-IB system without a controller, the instrument functions as a "talk only" device. # 3-61. HP-IB CONTROL SWITCH 3-62. The HP-IB Control Switch, located on the rear panel, has seven bit switches as shown in Figure 3-14. Each bit switch has two settings: logical 0 (left position) and logical 1 (right position). Bit switch 7 determines whether the instrument will be addressable by the controller in a multi-device system, or will function as a "talk only" device to output measurement data and/or instructions to an external "listener," e.g., printer or plotter. When bit switch 7 is set to 0, the instrument is in ADDRESSABLE mode and bit switches 1 through 5 determine the instrument address; when this switch is set to 1, the instrument is in TALK ONLY mode. Figure 3-14. HP-IB Control Switch. ## 3-63. ADDRESSABLE MODE 3-64. When bit switch 7 is set to ADDRESSABLE (i.e., set to 0), bit switches 1 through 5 represent the HP-IB address of the instrument, in binary. These switches are set to 10001 (decimal 17) when the instrument leaves the factory but can be set to any desired address between 0 and 30. Bit switch 6 has no meaning in this mode. The HP-IB Control Switch, set to the ADDRESSABLE mode and with the factory address setting, is shown in Figure 3-15. | Table 3-9. I | HP-IB | Interface | Capabilities | |--------------|-------|-----------|--------------| |--------------|-------|-----------|--------------| | Code | Interface Function*
(HP-IB Capabilities) | |--------------------|---| | SHI**
AHI
T5 | Source Handshake
Acceptor Handshake
Talker (basic talker, serial poll, talk only mode,
unaddress to talk if addressed to listen) | | L4 | Listener (basic listener, unaddress to listen if addressed to talk) | | SRI | Service Request | | RLl | Remote/Local (with local lockout) | | DC1 | Device Clear | | DTl | Device Trigger | Figure 3-15. ADDRESSABLE Mode. #### Note When the instrument is turned on, the address is displayed on FREQUENCY display after the SELF TEST. If the address switches are set to 10001, the display is as shown below: ## FREQUENCY ## 3-65. TALK ONLY MODE 3-66. When bit switch 7 is set to TALK ONLY (i.e., set to 1) as shown in Figure 3-16, the other bit switches, 1 through 6, function as described in Table 3-10. Figure 3-16. TALK ONLY Mode. Table 3-10. Functions of Bit Switches (1) through (6) | Bit
Switch | Name | Function When Set to 1 | Function When Set to 0 | |---------------|---------------|--|--| | 6 | WAIT | After a measurement, the 4193A waits until all measurement data has been received by the listener before proceeding to the next measurement, even in internal trigger mode. | After a measurement, the 4193A proceeds to the next measurement regardless of whether the listener has received all the measurement data or not. | | (5) | DELM1 | Selects CR LF as the Delimiter for the magnitude field.* When a printer is connected to the 4193A, this delimiter causes the printer to perform a carriage return and a line feed. | Selects the comma "," as the delimiter for the magnitude field.* The printer does not perform a carriage return or line feed. | | 4 | DELM2 | Selects (R) (LF) as the delimiter for the phase field.* This delimiter causes the printer to perform a carriage return and a line feed. | Selects the comma "," as the delimiter for the phase field.* The printer does not perform a carriage return or line feed. | | 3 | FREQ REQ | Specifies that frequency data be output along with magnitude and phase data. | Frequency data is not output. | | 2 | DELM3 | Selects (R) (LF) as the delimiter for the frequency field.* This delimiter causes the printer to perform a carriage return and a line feed. | Selects the comma "," as the delimiter for the frequency field.* The printer does not perform a carriage return or line feed. | | 1 | STATUS
REQ | Specifies that status data be output along with magnitude and phase data. | Status data is not output. | ^{*} Refer to para. 3-71, Data Output. # 3-67. HP-IB STATUS INDICATORS 3-68. The HP-IB Status Indicators are four LED lamps located on the front panel. When lit, these lamps show the existing status of the 4193A in the HP-IB system as follows: SRQ: SRQ signal from the 4193A to the controller is on the HP-IB line. Refer to paragraph 3-77. LISTEN: The 4193A is set to listener. TALK: The 4193A is set to talker. REMOTE: The 4193A is remotely controlled. ## 3-69. LOCAL KEY 3-70. The LOCAL key releases the 4193A from HP-IB remote control and allows measurement conditions to be set from the front panel. The REMOTE lamp will go off when this key is pressed. LOCAL control is not available when the 4193A is set to "local lockout" status by the controller. #### 3-71. DATA OUTPUT 3-72. Measurement and status data are output to external devices in bit parallel, byte serial format via the eight DIO signal lines of the HP-IB. These data consist of impedance magnitude and phase data, test frequency data, and key status data. Magnitude and phase data are always output, but output of test frequency data and key status data depends on the program (ADDRESSABLE), or the setting of the HP-IB Control Switch on the rear panel, refer to Table 3-10. All characters are coded in accordance with ASCII coding conventions. ## [1] Impedance Magnitude Data Field This field contains READY/NOT READY information and the value of the measured impedance. $$\frac{Yx^*, Sx}{(1)}, \frac{ZMxxxxx}{(3)}, \frac{Ex}{(4)}, \frac{1}{(5)}$$ * x represents single digit, variable numeric data. - (1) Status of measurement: Y0 = NOT. READY, Y1 = READY. - (2) Status of magnitude data: S0 = less than 18 counts, S1 = less than 180 counts, S2 = 180 to 2000 counts, S3 = over range, S4 = Er 40 or Er 41, S5 = Er 30, S6 = Er 30 and Er 40. - (3) Magnitude display counts. - (4) Unit: $E0 = \Omega$, $E3 = k\Omega$ - (5) Delimiter: comma in ADDRESSABLE mode. In TALK ONLY mode, CR LF or a comma depending on the setting of bit switch 5 on the HP-IB Control Switch. Refer to Table 3-10. ## [2] Impedance Phase Data Field This field contains the phase of the measured impedance. $$\frac{ZP_{\underline{s}*xxx.x}}{(1)}(\underline{2})$$ - * s represents the sign (+ or -). - (1) Sign and magnitude with decimal point of the measured phase. - (2) Delimeter: See [1]. - [3] Frequency Field This field contains test frequency information. $$(\frac{\text{Wx}}{(1)}, \frac{\text{Bx}}{(2)}, \frac{\text{FRxxxxx}}{(3)}, \frac{\text{Ex}}{(4)}, \frac{\text{Px}}{(5)}, \frac{\text{Qx}}{(6)}, \frac{7}{7})$$ - (1) Sweep mode: W1 = partial sweep, W2 = full sweep, W3 = last frequency in sweep measurement, W4 = spot measurement. - (2) Oscillator: B0 = Internal oscillator, B1 = External oscillator. - (3) Frequency display counts. - (4) Unit: E6 = MHz - (5) Partial sweep step: P1 = 100, P2 = 1000, P3 = HIGH RESOLN. - (6) Frequency resolution: Ql = COARSE, Q2 = MED, Q3 = FINE. - (7) Delimiter: See [1]. ## [4] Status Field This field contains key status data (front panel control settings). $$\frac{Ax, Rx, Hx, Tx, Xx, Ix, Gx, Dx}{(1)(2)(3)(4)(5)(6)(7)(8)}$$ - (1) Magnitude range mode: A0 = HOLD, A1 = AUTO. - (2) Magnitude range : R1 = 10Ω , R2 = 100Ω , R3 = $1k\Omega$, R4 = $10k\Omega$, R5 = $100k\Omega$. - (3) High speed mode: H0 = OFF, H1 = ON. - (4) Trigger mode: Tl = INT, T2 = HOLD. - (5) X-Y Recorder ON/OFF: X0 = OFF, X1 = ON. - (6) Interpolation: I0 = OFF, I1 = ON. - (7) External trigger: G0 = Disable, G1 = Enable. - (8) Data ready: D0 = SRQ OFF, D1 = SRQ ON. ## 3-73. OUTPUT DATA FORMAT 3-74. There are four output data formats available on the 4193A, as listed in the table below. The format is determined by the HP-IB program (ADDRESSABLE mode). For TALK ONLY mode, see Table 3-10. 3-75. Programming Guide for the 4193A 3-76. Sample programs that can be run on the Model 9825A or HP-85 Desktop Computer are given in Figures 3-19 and 3-20. #### Note Specific information on HP-IB programming with the 9825A and HP-85 can be found in the programming manual of each computer. Following equipment are required to run the sample programs: - (1) 4193A Vector Impedance Meter - (2) 98034A/B HP-IB Interface Card - (3) 9825A Desktop Computer with 98210A String-Advanced Programming ROM and 98213A General I/O-Extended I/O ROM, or 9825B/T. or - (2) 82937A HP-IB INTERFACE - (3) HP-85 Personal Computer with 00085-15003 INPUT/OUTPUT ROM. ## 3-77. SERVICE REQUEST STATUS BYTE 3-78. The 4193A outputs an RQS (Request Service) signal whenever it is set to one of the six possible service request states. Figure 3-17 shows the contents of the Status Byte. Bit 7 (RQS) indicates whether or not a service request exists. Bit 8 is always zero (0). Bits 1 through 6 identify the type of service request. Following are the service request states of the 4193A. Table 3-ll. Output Data Format | Format | Fields Output | | | | | |--------|---------------|-------|-------|--------|--| | rormat | Magnitude | Phase | Freq. | Status | | | FMTl | Yes | Yes | No | No | | | FMT2 | Yes | Yes | Yes | No | | | FMT3 | Yes | Yes | No | Yes | | | FMT4 | Yes | Yes | Yes | Yes | | #### SECTION III - (1) Bit 6: Set when no syntax error but program is inoperative as follows: - (1) During PARTIAL/FULL SWEEP: Changing SPOT FREQ. (FR x EN) Executing LL, UR when X-Y RECORDER OUTPUT is ON Executing SELF TEST (S1) (2)
During PARTIAL SWEEP: Changing STEPS (Pl, P2, P3) (3) When X-Y RECORDER OUTPUT is OFF: Executing INTRPL (IO, II) (4) When X-Y RECORDER OUTPUT is ON and TRIGGER is INT: Executing Lower Left (LL) or Upper Right (UR) - (2) Bit 5: Indicates the result of the SELF TEST; 0 = FAIL, 1 = PASS. - (3) Bit 4: Set when the 4193A is externally triggered before data has been completely output in REMOTE state. - (4) Bit 3: Set when SELF TEST is completed. - (5) Bit 2: Set when the remote program contains a syntax error. - (6) Bit 1: Set when measured data is valid, independent of "D0" or "D1" setting. ## 3-79. PARAMETER SETTING 3-80. SPOT FREQUENCY and PARTIAL SWEEP START and STOP frequencies are set via remote programming, as follows: SPOT FREQUENCY: $FR \times EN$ (1)(2)(3) PARTIAL SWEEP START FREQUENCY: $\underline{\text{TF}} \times \underline{\text{EN}}$ (1)(2)(3) STOP FREQUENCY: $PF \times EN$ (1)(2)(3) - (l) Parameter program code - (2) Four digit (max.) number between 0.400 and 110.0; the unit is MHz. - (3) Parameter terminator | 8
MSB | 7 | 6 | 5 | 4 | 3 | 2 | 1
LSB | |----------|-----|-------------------------|------------------------|----------------------|---------------------|-----------------|---------------| | | SRQ | Prog.
logic
error | Self
test
result | Trig.
too
fast | Self
test
end | Syntax
error | Data
ready | Figure 3-17. Status Byte. Table 3-12 REMOTE PROGRAM CODE | Table 3-12. REMOTE PROGRAM CODE | | | | | |---------------------------------|--|-------------------------------|---|--| | FUNCTION | CONTROL | CODE | DESCRIPTION | | | FREQUENCY RESOLUTION | COARSE
MED
FINE | Q1
Q2
Q3* | | | | AUTO MAGNITUDE RANGE | OFF
ON | AØ
A1° | | | | MAGNITUDE RANGE | 10Ω range 100Ω range $1k\Omega$ range $10k\Omega$ range $100k\Omega$ range | R1
R2
R3
R4
R5 | 00.00 - 19.99Ω
000.0 - 199.9Ω
0.000 - 1.999kΩ
00.00 - 19.99kΩ
000 120. kΩ | | | HIGH SPEED MODE | OFF
ON | нø°
Н1 | <pre> ≥1 measurement/second ≥3 - 10 measurement/second </pre> | | | SWEEP STEP | 100 steps
1000 seeps
HIGH RESOLUTION | P1°
P2
P3 | Sweep the least significant digit by 1 count. | | | AUTO SWEEP | PARTIAL SWEEP START
FULL SWEEP START
SWEEP ABORT | W1
W2
W3 | For both PARTIAL and FULL sweep. | | | TRIGGER | INTERNAL
MAN/EXT | T1°
T2 | Specifies MAN/EXT trigger mode. | | | EXECUTE | | EX | Triggers the 4193A. | | | EXTERNAL TRIGGER | OFF
ON | GØ
G1 | Disables external trigger.
Enables external trigger. | | | RECORDER OUTPUT | OFF
ON
LOWER LEFT
UPPER RIGHT | Xذ
X1
LL
UR | | | | INTERPOLATION | OFF
ON | Iذ
Il | | | | SELF TEST | OFF
ON | Sذ | | | | DATA READY SRQ | OFF
ON | DØ D1 | Outputs SRQ when data is measured. | | | OUTPUT DATA FORMAT | | FMT1*
FMT2
FMT3
FMT4 | STANDARD FIELD* output only. STANDARD + FREQUENCY FIELD* output. STANDARD + STATUS FIELD* output. STANDARD + FREQUENCY + STATUS FIELD output. | | | CANCEL DATA | | CL | | | Default code.See para. 3-71 Output Data. Figure 3-18. HP-IB Connector. ## Sample Program 1 #### **PURPOSE:** This program is a remote control, data output program for spot frequency measurement via the HP-IB. ## 9825A Program: ## HP-85 Program: ``` O: flt 3 1: clr 717 2: wrt 717, "FMT2T2" 3: wrt 717, "FR1EN" 4: wrt 717, "FR1EN" 4: wrt 717, "EX" 5: red 717, A,B,C,D,E,F,G 6: dsp C,D,G 7: prt C,D,G 8: end *1785 ``` | Lin | ne | Description | | |-------|-------|---|--| | 9825A | HP 85 | | | | 1 | 10 | Sets all 4193A's controls to Initial Control Settings. | | | 2 | 20 | Selects the data output format and the trigger mode. See para. 3-73. | | | 3 | 30 | Sets test frequency to lMHz. | | | 4 | 40 | Triggers the 4193A. | | | 5 | 50 | Reads the output data from the 4193A. | | | 6 | 60 | Displays the magnitude, phase, and test frequency values on the controller's display. | | | 7 | 70 | Prints out the measurement data on the controller's printer. | | To store the complete output data, the following program can be used: #### 9825A Program: ## HP-85 Program: ``` O: dim A$[100] 1: clr 717 2: wrt 717, "FMT4T2" 3: wrt 717, "FR1EN" 4: wrt 717, "EX" 5: red 717, A$ 6: prt A$ 7: end *21373 ``` Figure 3-19. Sample Program 1. ## Sample Program 2 #### **PURPOSE:** This program is a remote control, data output program for swept frequency measurement via the HP-IB. #### 9825A Program: ## HP-85 Program: ``` O: flt 3 1: clr 717 2: wrt 717,"FMT2T2" 3: wrt 717,"FMT2T2" 3: wrt 717,"TF10ENPF20ENW1" 4: wrt 717,"EX" 5: red 717,A,B,C,D,E,F,G 6: prt C,D,G 7: if E=3; jmp 2 8: gto 4 9: end *5830 ``` | Li | ne | | | |-------|-------|---|--| | 9825A | HP 85 | Description | | | 1 | 10 | Sets all 4193A's controls to Initial Control Settings. | | | 2 | 20 | Selects the data output format and the trigger mode. See para. 3-73. | | | 3 | 30 | Sets the START frequency and STOP frequency for a PARTIAL sweep to 10MHz and 20MHz, respectively. | | | 4 | 40 | Triggers the 4193A. | | | 5 | 50 | Reads the output data from the 4193A. | | | 6 | 60 | Prints out the magnitude, phase, and test frequency data on the controller's printer. | | | · 7 | 70 | When the test frequency reaches the STOP frequency, E changes from 1 to 3. See para. 3-72. | | For FULL sweep measurement, the following program can be used: ## 9825A Program: ## HP-85 Program: ``` 0: flt 3 10 CLEAR 717 20 OUTPUT 717 "FMT2T2W2" 30 OUTPUT 717 "EX" 40 ENTER 717 ; A,B,C,D,E,F,G 1: clr 717 2: wrt 717,"FMT2T2W2" 3: wrt 717,"EX" 3: wrt 717,"EX" 40 ENTER 717 ; 50 PRINT C,D,G 4: red 717,A,B,C,D,E,F,G 5: prt C,D,G 60 IF E=3 THEN 80 6: if E=3;jmp 2 70 GOTO 30 7: gto 3 80 END 8: end *12992 ``` Figure 3-20. Sample Program 2. Table 4-1. Recommended Test Equipment (Sheet 1 of 2) | | 1 1 | | | |----------------------|---|--------------------|-------| | Equipment | Critical Specifications | Recommended Model | Use* | | | 10Ω ±. 1Ω at dc | | Р | | | $50\Omega \pm .5\Omega$ at dc | | Р | | Ī | $100\Omega \pm 1\Omega$ at dc | | P,A,T | | Probe Type | $180\Omega\pm1.8\Omega$ at dc | HP 16345A | P | | Standards | 1 k Ω ± 10 Ω at dc | 20010 | Р | | | 1.8 k Ω ± 18 Ω at dc | | P | | | $10 \mathrm{k}\Omega$ $\pm 100\Omega$ at dc | | P | | Ţ | 5pF ±1pFΩ at 1MHz | | P | | Frequency
Counter | Frequency Band: 400kHz thru 110MHz
Resolution: .1Hz maximum
Display: 8 digits
Accuracy: ≤2.5ppm of reading | HP 5382A | P,A,T | | Counter | Frequency Band: 300MHz maximum Reactivity: 30mVrms | HP 5340A | A,T | | Digital
Voltmeter | DC Voltage Range: 10V
Resolution: 10mV
Display: 4 digits | HP 3465B | P,A,T | | RF
Voltmeter | Frequency Range: 400kHz to 110MHz AC Voltage Range: 10mVrms Resolution: 0.1mVrms Accuracy: ≤5% | HP 3406A | P,A,T | | Test
Oscillator | Frequency Range: Up to 10MHz
Output Level: ≧0dBm | HP 651B | P,A,T | | Power Supply | Voltage Range: 0 to 10Volts | HP 6214A | A,T | | Pulse
Generator | Pulse Width: 10nsec. | 8012B | A,T | | Oscillo-
scope | Frequency Range: 5MHz
Deflection Factor: 50mV/DIV
Dual-channel | HP1740A | A,T | | Sampling
Scope | Time-base: .5nsec. | HP 180C/1811A | A,T | | Sampling
Head | Bandwidth: 2GHz | HP 1430C | A,T | | Spectrum
Analyzer | Frequency Range: 50MHz to 550MHz | HP141T/8552B/8554B | A,T | | Calculator | | HP 9825A | P | | A12 BPF ADJ
Board | | HP P/N 04193-66564 | A,T | | 20dB
Attenuator | Type N (2EA) | HP 8491A | A,T | ^{*} USE: P = Performance Test, A = Adjustment, T = Troubleshooting # SECTION IV Table 4-1. Recommended Test Equipment (Sheet 2 of 2) | | | The (blieft 2 of 2) | | |-------------------|---------------------------------------|---------------------|------| | Equipment | Critical Specifications | Recommended Model | Use* | | | 50ΩT Adapter | HP 11063A | A | | | BNC (female)-GR874 Adapter | HP P/N 1250-0850 | A | | | BNC Probe Adapter | HP P/N 04193-61152 | A | | Adapters | BNC T Adapter (2EA) | HP P/N 1250-0781 | A,T | | | BNC(female)-SMB(female)Adapter(4EA) | HP P/N 1250-1236 | A,T | | | BNC(female)-TYPE N(female) Adapter | HP P/N 1250-1476 | A,T | | | BNC(female)-TYPE N(male) Adapter(2EA) | HP P/N 1250-1535 | A,T | | | BNC(female)-BNC(female) Adapter | HP P/N 1250-0080 | A,T | | Extender | 12 pin dual in-line | HP P/N 04193-66561 | A,T | | Boards | 12 pin dual in-line | HP P/N 04193-66562 | A,T | | | 24 pin dual in-line | HP P/N 04193-66563 | A,T | | Extender
Cable | SMB (male)-SMB (female) cable (3EA) | HP P/N 04193-61630 | T | | Vise Ass'y | | HP P/N 04193-69500 | Т | | Termination | GR 874 50 Ω Termination | HP P/N 0950-0090 | A | | Phase | | | | | Reference | | HP P/N 04193-66565 | T | | Board | | | - | ^{*} USE: P = Performance Test, A = Adjustment, T = Troubleshooting # SECTION IV PERFORMANCE TESTS #### 4-1. INTRODUCTION 4-2. This section provides the tests and procedures used to verify the 4193A specifications listed in Table 1-1. All tests can be performed without access to the interior of the instrument. The performance tests can be used when performing incoming inspection of the instrument and when verifying that the instrument meets specified performance after troubleshooting and/or adjustment. If the performance tests indicate that the instrument is operating outside specified limits, check that the controls on the instruments used in the test and the test setup itself are correct and then proceed with adjustments and/or troubleshooting. #### Note To ensure proper test
results and instrument operation, Hewlett-Packard suggests a 60 minute warm-up and stabilization period before performing any of the performance tests. #### 4-3. EQUIPMENT REQUIRED 4-4. Equipment required to perform all of the performance tests is listed in Table 4-1. Any equipment that satisfies or exceeds the critical specifications listed in the table may be used as a substitute for the recommended models. Accuracy checks described in this section use the HP Model 16345A Probe Type Calibration Box. The characteristics of the equipment satisfy the performance requirements for the accuracy checks and are especially suited for use as the 4193A's accuracy test standards. #### Note Components used as standards should be calibrated by an instrument whose accuracy is traceable to NBS or an equivalent standards group; or calibrated directly by an authorized calibration organization such as NBS. The calibration cycle should be in accordance with the stability specifications of each component. #### 4-5. TEST RECORD 4-6. Performance test results can be recorded on the Test Record at the completion of the test. The Test Record is at the end of this section and it lists all the tested specifications and their acceptable limits. Test results recorded at incoming inspection can be used for comparison in periodic maintenance, trouble-shooting, and after repair or adjustment. ## 4-7. CALIBRATION CYCLE 4-8. This instrument requires periodic verification of performance. Depending on the conditions under which the instrument is used, e.g., environmental conditions or frequency of use, the instrument should be checked, with the performance tests described here, at least once a year. To keep instrument down-time minimum and to insure optimum operation, preventive maintenance should be performed at least twice a year. ## 4-9. INITIAL OPERATION CHECK This check verifies that the logic section and display section are functioning properly. Figure 4-1. Initial Operation Check Setup. #### **EQUIPMENT:** None. #### PROCEDURE: - 1. Insert the probe into the PROBE REST as shown in Figure 4-1. - 2. Turn the instrument on. #### [DISPLAY TEST] 3. Confirm that all front-panel indicator lamps and display segments light for about three seconds. ## [SELF TEST] 4. Confirm that the following SELF TEST codes are sequentially displayed on the FREQUENCY display: Indicates that the SELF TEST program is in progress. Indicates that the instrument has passed the SELF TEST. HP-IB address. Seventeen (17) is the factory-set address. L" appears on the FREQUENCY display, the instrument needs service. Refer to Section VIII. ## [INITIAL CONTROL SETTINGS] 5. Confirm that the instrument is set to the Initial Control Settings listed below. | SPOT FREQ | |-----------| | | # 4-10. TEST FREQUENCY ACCURACY TEST PURPOSE: This test verifies that the test frequency is within specifications. Figure 4-2. Test Frequency Accuracy Test Setup. ## **EQUIPMENT:** Frequency Counter HP 5382A BNC Adapter HP P/N 04193-61152 #### PROCEDURE: - 1. Connect the 4193A's probe to the 5382A's input as shown in Figure 4-2. Use the furnished BNC adapter (HP Part No.: 04193-61152). - 2. Set the 4193A and 5382A to the following control settings: 3. Press the SELF TEST key and confirm that the MAGNITUDE and PHASE displays are as shown below. - 4. Change the test frequency from 41.93MHz to 0.4MHz, and confirm that the 5382A displays .40000MHz ± 40Hz. - 5. Successively change the test frequency to 9.999MHz, 10.00MHz, 39.99MHz, 40.00MHz, 69.99MHz, 70.00MHz, and 110.0MHz, and confirm that the frequency readings on the 5382A are within the test limits listed in Table 4-2. Table 4-2. Test Frequency Accuracy Test Limits | Test Frequency (MHz) | Table Limits (MHz) | | |---|--|--| | 0.400
9.999
10.00
39.99
40.00
69.99
70.00 | 0.399960 to 0.400040
9.99800 to 9.99999
9.99900 to 10.0010
39.9860 to 39.9939
39.9960 to 40.0040
69.9830 to 69.9969
69.9930 to 70.0070
109.989 to 110.011 | | #### IMPEDANCE ACCURACY TEST 4-12. This test verifies that the accuracy of impedance measurements is within PURPOSE: specifications. Figure 4-4. Impedance Accuracy Test Setup. ## **EQUIPMENT:** Probe Type Cal. Box HP 16345A #### PROCEDURE: - 1. Turn on the instrument to establish Initial Control Settings. - 2. Connect the probe to the 10Ω standard of the 16345A. - 3. Read measured values displayed on the MAGNITUDE and PHASE displays when test frequency is set to 0.4MHz, 1MHz, 10MHz, 40MHz, and 110MHz, respectively. - 4. Confirm that each value is within the test limits listed in Table 4-4. - 5. Perform step 3 for each of the 100Ω , $lk\Omega$, $10k\Omega$, and 5pF standards, and confirm that each value is within the test limits listed in Tables 4-5 through 4-8. | Table 4-4. | Table 4-4. Impedance Accuracy Test Limits for 1011 | | | | |----------------|--|--------------------------|--|--| | _ | Test Limits | | | | | Test Frequency | Magnitude | Phase | | | | 0.4MHz | C.V.* ±84 counts | C.V.* ±62 counts | | | | 1MHz | C.V. ±72 counts | C.V. ±35 counts | | | | 10MHz | C.V. <u>+</u> 72 counts | C.V. ±53 counts | | | | 4 0MH z | C.V. ±133 counts | C.V. <u>+</u> 113 counts | | | | 110MHz | C.V. ±329 counts | C.V. ±253 counts | | | Table 4-4 Impedance Accuracy Test Limits for 10Ω ^{*:} Reference value listed in the data sheet of the 16345A Table 4-5. Impedance Accuracy Test Limits for $100\Omega\,$ | Test Frequency | Test Limits | | | |----------------|------------------|--------------------------|--| | rest frequency | Magnitude | Phase | | | 0.4MHz | C.V.* ±42 counts | C.V.* <u>+</u> 62 counts | | | 1MH z | C.V. ±34 counts | C.V. ±34 counts | | | 10MHz | C.V. ±34 counts | C.V. ±36 counts | | | 40MHz | C.V. ±44 counts | C.V. ±47 counts | | | 110MHz | C.V. ±71 counts | C.V. ±71 counts | | Table 4-6. Impedance Accuracy Test Limits for $1k\Omega$ | Test Frequency | Test Limits | | |----------------|--------------------------|------------------| | | Magnitude | Phase | | 0.4MHz | C.V.* <u>+</u> 50 counts | C.V.* ±61 counts | | 1MHz | C.V. ±41 counts | C.V. ±34 counts | | 10MHz | C.V. ±41 counts | C.V. ±44 counts | | 40MHz | C.V. ±72 counts | C.V. ±77 counts | | 110MHz | C.V. <u>+</u> 122 counts | C.V. ±154 counts | Table 4-7. Impedance Accuracy Test Limits for $10k\Omega$ | Test Frequency | Test Limits | | | |----------------|------------------|------------------|--| | rest Trequency | Magnitude | Phase | | | 0.4MHz | C.V.* ±47 counts | C.V.* ±65 counts | | | 1MHz | C.V. ±38 counts | C.V. ±36 counts | | | 10MHz | C.V. ±46 counts | C.V. ±84 counts | | | 40MHz | C.V. ±77 counts | C.V. ±87 counts | | Table 4-8. Impedance Accuracy Test Limits for 5pF | Test Frequency | Test Limits | | |----------------|-----------------|-----------------| | rest frequency | Magnitude | Phase | | 0.4MHz | C.V.* ±7 counts | C.V.* ±8 counts | | 1MHz | C.V. ±5 counts | C.V. ±6 counts | ^{*:} Reference value listed in the data sheet of the 16345A ## 4-13. EXTERNAL OSCILLATOR USAGE CHECK PURPOSE: This test verifies the useability of an external signal source. Figure 4-5. External Oscillator Usage Check Setup. ## **EQUIPMENT:** | Test Oscillator ······ | HP 651B | |------------------------|----------| | Frequency Counter | HP 5382A | | RNC Adenter | | #### PROCEDURE: - l. Connect the probe to the 5382A's input with the furnished BNC adapter (HP Part No.: 04193-61152), and connect the 651B 50Ω output to the 4193A's EXT OSC terminal on the rear-panel as shown in Figure 4-5. - 2. Set the instruments' controls as follows: | 4193A: | Test Frequency Other Controls | 41.93MHz
Initial Settings | |--------|--|------------------------------| | 651B: | FREQUENCYOUTPUT ATTENUATOROUTPUT AMPLITUDE | -70dBm | | 5382A: | GATE TIME | | 3. Press the 4193A's SELF TEST key and confirm that the MAGNITUDE and PHASE displays are as shown below: - 4. Set the 4193A's test frequency to 10.00MHz. - 5. Confirm that the 5382A displays 10.000MHz ±lkHz. - 6. Set the 651B's OUTPUT ATTENUATOR switch to 0dBm. - 7. Confirm that the 4193A's EXT OSC lamp on the front-panel turns on, and that the 5382A displays the 651B's test frequency, approximately 10MHz. ## 4-14. RECORDER OUTPUT VOLTAGE ACCURACY TEST PURPOSE: This test verifies that the RECORDER OUTPUT voltages are within specifications. Figure 4-6. Recorder-output Voltage Accuracy Test Setup. | EQUIPMENT: | | |--------------------------------------|------| | DVM BNC (female)-Dual Banana Adapter |
 | | PROCEDURE: | | - 1. Connect the INPUT of the 3465B to the MAGNITUDE RECORDER OUTPUT terminal on the rear-panel of the 4193A. Refer to Figure 4-6. - 2. Set the instruments' controls as follows. 3465B: FUNCTION - V RANGE 2 4193A: Initial Settings - 3. Press the \Box key on the 4193A. The readout on the 3465B should be $0V\pm20mV$. - 4. Press the $\stackrel{\text{us}}{\square}$ key on the 4193A. The readout on the 3465B should be 1V \pm 30mV. - 5. Repeat steps 3 and 4 for the PHASE and FREQUENCY RECORDER OUTPUTS. Table 4-9. Recorder-output Voltage Limits | | Minimum | Actual Value | Maximum | |--|-------------------|--------------|--------------------| | MAGNITUDE output: Lower Left (LL): Upper Right (UR): | - 20mV
+ 970mV | Vil : | + 20mV
+ 1030mV | | PHASE output: Lower Left (LL): Upper Right (UR): | - 20mV
+ 970mV | V LL : | + 20mV
+ 1030mV | | FREQUENCY output: Lower Left (LL): Upper Right (UR): | -20mV
+ 970mV | V LL : | + 20mV
+ 1030mV | # 4-15. HP-IB INTERFACE TEST PURPOSE: This test verifies the instrument's HP-IB capabilities. Figure 4-7. HP-IB
Interface Test Setup. ## **EQUIPMENT:** | Calculator ····· | HP9825A (9825B) | |----------------------|-------------------| | I/O ROM's ····· | HP98210A, 98213A | | Interface Cable | HP98034A (98034B) | | 100Ω Standard | HP16345A | # PROCEDURE: - a. Turn both the 4193A and the 9825A off. - b. Connect the 98034A between the 9825A and 4193A as shown in Figure 4-7, and install the I/O ROM's in the ROM slots. - c. Set the 4193A's HP-IB control switch, located on the rear panel, as follows: ``` bits 1-5:10001(17_{10}) bit 6:0 bit 7:0 ``` - d. Turn the 4193A and the 9825A on. - e. Load one of the three test programs into the calculator. Test programs are listed on pages 4-10, 4-12, and 4-14. - f. Execute the program and follow the prompts and instructions that are output by the 9825A. Details on the controller's (calculator) instructions and the appropriate operator response are given in Tables 4-10 through 4-12. ### TEST PROGRAM 1 ### **PURPOSE:** This test verifies that the 4193A has the following HP-IB capabilities: - (1) Remote/Local Capability - (2) Local Lockout - (3) Talk Disable - (4) Listen Disable ### PROGRAM LISTING: ``` O: "REMOTE/LOCAL TEST": 1: dim A$[1] 2: 0>N 3: rds(717))S 4: prt "REMOTE/LOCAL TEST"; spc 3 6: wrt 717,"T1";ent "LISTEN=1,TALK=0,REMOTE=1",A$ 7: if A$="n";1>N 8: cli 7;ent "LISTEN=O, TALK=O, REMOTE=1", A$ 9: if A$="n";1>N 10: lcl 7;ent "LISTEN=0, TALK=0, REMOTE=0", A$ 11: if A$="n";1>N 12: rem 717;ent "LISTEN=1, TALK=0, REMOTE=1", A$ 13: if A$="n";1>N 14: 11o 7 15: 1cl 717;ent "LISTEN=1, TALK=0, REMOTE=0", A$ 16: if A$="n";1>N 17: rem 7; wrt 717, "T1"; ent "LISTEN=1, TALK=0, REMOTE=1", A$ 18: if A$="n";1>N 19: if N=1;prt "REMOTE/LOCAL TEST FAIL";spc 3;jmp 2 20: prt "RÉMOTE/LOCAL TEST PASS"; spc 3 21: 0)N 22: prt "LISTEN/TALK TEST"; spc 3 23: red 717, A; ent "LISTEN=O, TALK=1, REMOTE=1", A$ 24: if A$="n";1>N 25: wrt 717, "T1"; ent "LISTEN=1, TALK=0, REMOTE=1", A$ 26: if A$="n";1>N 27: if N=1;prt "LISTEN/TALK TEST FAIL";spc 3;jmp 2 28: prt "LISTEN/TALK TEST PASS"; spc 3 29: prt "END"; spc 3 30: cli 7 31: lcl 7 32: end *14058 ``` Table 4-10. Controller Instructions and Operator Responses for Test Program 1 | Controller Instructions | | On an | | |-----------------------------------|---------------------------|---|--| | Status Indicators | Printout | Operator Response | | | | REMOTE/LOCAL TEST | | | | LISTEN = 1*, TALK = 0, REMOTE = 1 | | If the 4193A HP-IB Status Indicators | | | LISTEN = 0, TALK = 0, REMOTE = 1 | | and Controller Display are the same, press y, and If not, | | | LISTEN = 0, TALK = 0, REMOTE = 0 | | press N and CONTAME. | | | LISTEN = 1, TALK = 0, REMOTE = 1 | | | | | LISTEN = 1, TALK = 0, REMOTE = 0 | | | | | LISTEN = 1, TALK = 0, REMOTE = 1 | | | | | | REMOTE/LOCAL TEST
PASS | If all steps are correct, this message is output. | | | | REMOTE/TALK TEST
FAIL | If any step fails, this message is output. | | | | LISTEN/TALK TEST | | | | LISTEN = 0, TALK = 1, REMOTE = 1 | | If the 4193A HP-IB Status Indicators and Controller Display are the same, | | | LISTEN = 1, TALK = 0, REMOTE = 1 | | press (v), and (con-max). If not, press | | | | LISTEN/TALK TEST
PASS | If both steps are correct, this message is output. | | | | LISTEN/TALK TEST
FAIL | If any step fails, this message is output. | | | | END | | | ^{*1} indicates ON; 0 indicates OFF. ### TEST PROGRAM 2 ### **PURPOSE:** This test verifies that the 4193A has the following HP-IB capabilities: - (l) Talker - (2) Device Trigger ### PROGRAMMING: ``` O: "TALKER TEST": 1: prt "TALKER TEST"; spc 3 2: dsp "Insert probe to 100ohm";stp 3: prt "DATA OUTPUT TEST";spc 3 4: dim A$[100],B$[1] 5: rds(717))S 6: rem 7 7: cli 7 8: clr 717 9: wrt 717, "H1T2FMT2" 10: ent "Test frequency in MHz?", F 11: wrt 717,"FR",F,"EN" 12: trg 717 13: red 717,A,B,C,D,E,F,G 14: prt C, D, G; spc 2 15: ent "Is output data correct?(y or n)", B$ 16: if B$="n";prt "DATA OUTPUT TEST FAIL";spc 3;jmp 2 17: prt "DATA OUTPUT TEST PASS";spc 3 18: prt "COMPLETE DATA OUTPUT TEST"; spc 2 19: wrt 717,"H1T2FMT4" 20: trg 717 21: red 717,A$ 22: prt A$; spc 2 23: ent "Is output data correct?(y or n)", B$ 24: if B$="n";prt "COMPLETE DATA OUTPUT TEST FAIL";spc 3;jmp 2 25: prt "COMPLETE DATA OUTPUT TEST PASS"; spc 3 26: end *5970 ``` Table 4-11. Controller Instructions and Operator Responses for Test Program 2 | Control | ler Instructions | Onematon Degrapes | |----------------------------------|---|---| | Displays | Printout | Operator Response | | | TALKER TEST | | | Insert probe to 100ohm. | | Insert the probe to 100Ω standard in the 16345A. Then press \bigcirc | | Test Frequency in MHz? | DATA OUTPUT TEST | Type the desired test frequency value, from 0.4 to 110, and press | | Is output data correct? (y or n) | [Magnitude]
[Phase]
[Test Frequency] | If the output data is the same as the values displayed on each 4193A display, press v and If not, press v and | | | DATA OUTPUT TEST PASS | DATA OUTPUT TEST result. | | | DATA OUTPUT TEST FAIL | | | | COMPLETE DATA OUTPUT TEST | | | Is output data correct? (y or n) | Y1, S2, ZM [Magnitude], ZP [Phase], W4, B0, FR [Test Frequency], P1, Q3, A1, R2, H1, T2, X0, I0, G1, D0 | If the output data is the same as the left values, press (Y) and (COMPAND). If not, press (N) and (COMPAND). | | | COMPLETE DATA OUTPUT TEST PASS | COMPLETE DATA OUTPUT TEST result. | | | COMPLETE DATA OUTPUT TEST FAIL | | ### TEST PROGRAM 3 ## **PURPOSE:** This test program verifies that the 4193A has the following HP-IB capabilities: - (1) Service Request - (2) Serial Poll ## PROGRAM LISTING: ``` O: "SRQ TEST": 1: prt "SRQ TEST"; spc 3 2: fxd 0 3: oni 7,"SRQ" 4: rem 7 5: cli 7 6: clr 717 7: wrt 717,"GO" 8: O>S;prt "DATA READY";wrt 717,"D1T2";trg 717;gsb "LOOP" 9: 0>S;prt "SYNTAX ERROŔ";wrt 717,"DOW4CL";gsb´"LOOP" 10: O>S;prt "SELF TEST END";wrt 717, "S1";dsp "SELF TEST in progress" 11: gsb "LOOP" 12: O>S;prt "TRG. TOO FAST";dsp "Connect EXT TRG pin to ground";gsb "LOOP1" 13: gsb "L00P" 14: 0>S;prt "INEFFECTIVE PROGRAM";wrt 717,"W1S1CL";gsb "LOOP" 15: prt "SRQ TEST END"; spc 2 16: clr 717 17: cli 7 18: lc1 7 19: end 20: "LOOP":eir 7,128 21: if S>0;prt S;spc 1;ret 22: gto "L00P" 23: "SRQ":rds(717))S 24: if bit(6,5)=1;jmp 2 25: prt "OTHER DEVICE SRQ";spc 3 26: "IRET":eir 7,128 27: inet 28: "LOOP1":wrt 717,"FMT1G1CL" 29: trg 717 30: red 717,A,B,C,D 31: if S=0;gto "LOOP1" 32: wrt 717,"GO" 33: ret *19486 ``` Table 4-12. Controller Instructions and Operator Responses for Test Program 3 | Controller Instructions | | | | |-------------------------------|---------------------------|--|--| | Displays | Printout | Operator Response | | | | SRQ TEST | | | | | DATA READY
65 | SRQ Status Byte data should be 65 (= 01000001). | | | | SYNTAX ERROR
66 | SRQ Status Byte data should be 66 (= 01000010). | | | SELF TEST in progress | SELF TEST END
84 | SRQ Status Byte data should be 84 (= 01010100). If the instrument fails SELF TEST, it should be 68 (= 01000100). | | | Connect EXT TRG pin to ground | TRG. TOO FAST 72 | Connect the EXT TRG pin on the rear-panel to ground. SRQ Status Byte data should be 72 (= 01001000). | | | | INEFFECTIVE PROGRAM
96 | SRQ Status Byte data should be 96 (= 01100000). | | | | SRQ TEST END | | | | | | | i | |--|--|--|---| # PERFORMANCE TEST RECORD | Hewlett-Pac
Model 4193/
Vector Impe
Serial No. | | | Tested b | e | | |---|--|---------------------------------|---|-------------------|--| | Paragraph
Number | Test | | Minimum | Actual
Results | Maximum | | 4-9 | INITIAL OPERATION CHECK DISPLAY TEST result (Pass/Fail) SELF TEST result (Pass/Fail) INITIAL CONTROL SETTINGS result (Pass/Fai | 1) | | | | | 4-10 | TEST FREQUENCY ACCURACY CHECK | | | | | | | Frequency Setting: | | 0.399960 MHz
9.99800 MHz
9.99900 MHz
39.9860 MHz
39.9960 MHz
69.9830 MHz
69.9830 MHz
109.989 MHz | | 0.400040 MHz 9.99999 Miz 10.0010 MHz 39.9939 MHz 40.0040 MHz 69.9969 MHz 70.0070 MHz 110.011 MHz | | 4-11 | | | | | | | 4-12 | IMPEDANCE ACCURACY TEST Calibrated Value | | Minimum | Actual
Results | Maximum | | | 10 Ω range: 10 Ω standard (Ω ,mH) Frequency Setting: | | | | | | | 0.4MHz Magnitude Phase 1 MHz Magnitude Phase 10 MHz Magnitude Phase 40 MHz Magnitude Phase 110 MHz Magnitude Phase 110 MHz Magnitude Phase 110 MHz Magnitude Phase | Ω
Ω
Ω
Ω
Ω
Ω
Ω | C.V84 counts
C.V62 counts
C.V72 counts
C.V35 counts
C.V72 counts
C.V53 counts
C.V133 counts
C.V133 counts
C.V253 counts | | C.V. +84 counts
C.V. +62 counts
C.V. +72 counts
C.V. +75 counts
C.V. +75 counts
C.V. +53 counts
C.V.+138 counts
C.V.+133 counts
C.V.+329 counts
C.V.+253 counts | | | Frequency Setting: | | | | | | | 0.4MHz Magnitude Phase 1 MHz Magnitude Phase 10 MHz Magnitude Phase 40 MHz Magnitude Phase 110 MHz Magnitude Phase 110 MHz Magnitude Phase | | C.V42 counts C.V62 counts C.V34 counts C.V34 counts C.V36 counts C.V47 counts C.V47 counts C.V71 counts | | C.V. +42 counts C.V. +62 counts
C.V. +34 counts C.V. +34 counts C.V. +36 counts C.V. +36 counts C.V. +44 counts C.V. +47 counts C.V. +71 counts C.V. +71 counts | # PERFORMANCE TEST RECORD | Paragraph
Number | Test | Calibrated
Value | Minimum | Actual
Results | Maximum | |---------------------|--|---------------------|-------------------------------------|-------------------|--| | | lk Ω range: lk Ω standard (Ω ,pF) | | | | , | | | Frequency Setting: | | | | | | | 0.4MHz Magnitude | Ω | C.V50 counts | Ω | C.V. +50 counts | | | Phase
1 MHz Magnitude | ° | C.V61 counts
C.V41 counts | | C.V. +61 counts
C.V. +41 counts | | | Phase
10 MHz Magnitude | Ω | C.V34 counts
C.V41 counts | ο | C.V. +34 counts
C.V. +41 counts | | | Phase
40 MHz Magnitude | ° | C.V44 counts
C.V72 counts | ° | C.V. +44 counts
C.V. +72 counts | | | Phase
110 MHz Magnitude | ° | C.V77 counts
C.V122 counts | Ω | C.V. +77 counts | | | Phase | ° | C.V154 counts | • | C.V. +154 counts | | | 10kΩ range: $10kΩ$ standard (Ω,pF) | | | | | | | Frequency Setting: | | | | | | | 0.4MHz Magnitude
Phase | Ω | C.V47 counts | | C.V. +47 counts
C.V. +65 counts | | | 1 MHz Magnitude
Phase | υ | C.V65 counts
C.V38 counts | Ω | C.V. +38 counts | | | 10 MHz Magnitude | Ω | C.V36 counts
C.V46 counts | Ω | C.V. +36 counts
C.V. +46 counts | | | Phase
40 MHz Magnitude
Phase | Ω | C.V84 counts
C.V77 counts | ΩΩ | C.V. +84 counts
C.V. +77 counts | | | Phase 100kΩ range: 5pF standard (pF) | | C.V87 counts | ° | C.V. +87 counts | | | Frequency Setting: | | | | | | | 0.4MHz Magnitude | Ω | C.V7 counts | Ω | C.V. +7 counts | | | Phase 1 MHz Magnitude Phase | Ω | C.V3 counts C.V5 counts C.V4 counts | Ω | C.V. +7 counts
C.V. +3 counts
C.V. +5 counts
C.V. +4 counts | | 4-13 | EXTERNAL OSCILLATOR USAGE CHECK | | | | | | | Test result (Pass/Fail) | | | | | | 4-14 | RECORDER-OUTPUT VOLTAGE ACCURACY TEST | | | | | | | MAGNITUDE RECORDER-OUTPUT | | | | | | | Lower Left (↓ LL) Upper Right (UR →) | | -20mV
+970mV | | +20mV
+1030mV | | | PHASE RECORDER-OUTPUT | | | | | | | Lower Left (| | -20mV
+970mV | | +20mV
+1030mV | | | FREQUENCY RECORDER-OUTPUT | | | | | | | Lower Left (LL) | | - 20mV | | +20mV | | | Upper Right (UR +) | | +970mV | | +1030mV | | 4-15 | HP-IB INTERFACE TEST | | | | | | | REMOTE/LOCAL TEST result (Pass/Fail) LISTEN/TALK TEST result (Pass/Fail) DATA OUTPUT TEST result (Pass/Fail) COMPLETE DATA OUTPUT TEST result (Pass/Fa | ail) | | | | Table 5-1. Adjustable Components | | | - | |--------------------------|-----------------|--| | Reference
Designation | Name of Control | Purpose | | A1C3 Vp ADJ (Para. 5-28) | | Equalizes the height of the V-Channel and I-Channel sampling pulses in order to maximize sampling efficiency in both channels. | | A2R58
(Para. 5-27) | BIAS ADJ | Eliminates test signal harmonics in order to minimize measurement error. | | A3R9
(Para. 5-33) | VB | Adjusts the dc bias voltage applied to sampling diodes. | | A3R6
(Para. 5-34) | MAG ADJ | Adjusts the V channel gain in order to adjust the amplitude of the magnitude signal. | | A4R10
(Para. 5-31) | IB | Adjusts the dc bias voltage applied to sampling diodes. | | A4R30
(Para. 5-32) | GAIN | Adjusts the I channel gain in order to adjust the current level through the DUT. | | A4R6
(Para. 5-34) | PHASE ADJ | Eliminates the phase shift in the medium frequency range. | | A6C8
(Para. 5-25) | VCXO ADJ | Adjusts the VCXO frequency range. | | A6C7
(Para. 5-26) | BPF ADJ | Adjusts the center frequency of the BPF to 299.99MHz. | | A8C28
(Para. 5-21) | 100MHz ADJ | Adjusts the reference frequency of the Crystal Oscillator to 100MHz. | | A8C3
(Para. 5-22) | BPF ADJ | Adjusts the center frequency of the BPF to 300MHz. | | A8R1
(Para. 5-23) | LEVEL ADJ | Controls the output signal level to the MIXER on the A9 board. | | A11R3
(Para. 5-24) | OFFSET | Eliminate any dc offset voltage in the Integrator Circuit on the All board in order to maximize measurement accuracy. | | A12R11
(Para. 5-30) | GAIN I | Adjusts the gain of the IF BPF in the I channel. | | A12R12
(Para. 5-30) | PHASE I | Adjusts the center frequency of the IF BPF in the I channel. | | A12R3
(Para. 5-30) | GAIN V/I | Adjusts the gain of the IF BPF in the V/I channel. | | A12R4
(Para. 5-30) | PHASE V/I | Adjusts the center frequency of the IF BPF in $\ensuremath{\text{V/I}}$ channel. | | Al3Rl
(Para. 5-29) | ALC BIAS | Adjusts ALC reference voltage in the Integrator Circuit. | | A15R1
(Para. 5-35) | F FS ADJ | Adjusts the full-scale output voltage for frequency analog output. | | A15R2
(Para. 5-35) | M FS ADJ | Adjusts the full-scale output voltage for magnitude analog output. | | A15R3
(Para. 5-35) | P FS ADJ | Adjusts the full-scale output voltage for phase analog output. | | A41
(Para. 5-34) | LENGTH ADJ | Eliminate the phase difference between V and I channels in the high frequency range. $ \hspace{1.5cm} . \hspace{1.5cm}$ | | | <u> </u> | | # SECTION V ADJUSTMENT ### 5-1. INTRODUCTION This section describes the adjustments and checks required to return the 4193A to the specifications listed in Table 1-1 after repairs have been made. These adjustments and checks can also be performed along with periodic maintenance to keep the instrument in optimum operating condition. The recommended adjustment cycle for the 4193A is twice a year. All adjustable components referred to in the adjustment procedures are listed in Table 5-l. If proper performance cannot be achieved after adjustment, refer to the troubleshooting procedures described in Section VIII. ### Note To ensure proper results and instrument operation, Hewlett-Packard suggests a 60 minute warm-up and stabilization period before performing any of the adjustments described here. ## 5-3. SAFETY REQUIREMENTS 5-4. Although the 4193A was designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to ensure operator safety and to keep the instrument in a safe and serviceable condition. Adjustments described in this section should be performed by qualified service personnel only. ## WARNING INTERRUPTION ANY OF THE **PROTECTIVE** (GROUNDED) CON-DUCTOR (INSIDE OR OUTSIDE THE INSTRUMENT) OR DISCONNECTION OF THE PROTECTIVE EARTH TERMINAL LIKELY TO MAKE THE INSTRUMENT DANGEROUS. INTEN-TIONAL INTERRUPTION, FOR ANY REASON, IS PROHIBITED. - 5-5. The removal or opening of covers for removal or adjustment of parts, other than those which are accessible by hand, will expose live parts. - 5-6. Capacitors in the instrument may still be charged even if the instrument has been disconnected from the power source (AC line) for an extended period of time. #### WARNING ADJUSTMENTS DESCRIBED IN THIS SECTION ARE PERFORMED WITH POWER SUPPLIED AND PROTECTIVE COVERS REMOVED. ENERGY EXISTING AT MANY POINTS MAY, IF CONTACTED, RESULT IN SERIOUS PERSONAL INJURY. ## 5-7. EQUIPMENT REQUIRED 5-8. All the equipment required to perform the adjustments described in this section are listed in Table 4-1 on page 4-0. Each piece of equipment listed in Table 4-1 should be calibrated to satisfy its own specifications, as well as those of the required characteristics. If the recommended model is not available, any instrument whose specifications equal or surpass those of the recommended model may be used instead. ## 5-9. FACTORY SELECTED COMPONENTS 5-10. Factory selected components are identifiable by an asterisk (*) adjacent to the reference designator on the schematic diagrams in Section VIII (only nominal values are given). Table 5-2 lists the reference designators of all factory selected components. Also listed in Table 5-2 are the nominal value range of each component and a brief description of how each component affects instrument performance. Adjustable components, with reference designators, are listed in Table 5-1. This table also lists the name of the adjustment and its purpose. ## 5-ll. ADJUSTMENT RELATIONSHIPS 5-12. The adjustment procedures described in this section, beginning with paragraph 5-21, are interactive and therefore should be performed in the sequence given. Ignoring or changing the order of the procedures may make it impossible to obtain optimum instrument performance. Table 5-3 lists the necessary adjustment procedures to follow after the instrument has been repaired. ### 5-13. ADJUSTMENT LOCATIONS 5-14. To help locate the appropriate adjustment points, the locations of the components to be adjusted are illustrated throughout the adjustment procedures. The locations of factory selected components, connectors, and other components related to the adjustments are shown in the individual board assembly-component illustrations (fold-out service sheets) in Section VIII. # 5-15. INITIAL OPERATING PROCEDURE 5-16. Before proceeding with the adjustments described starting in paragraph 5-21, perform the following three preliminary procedures. These procedures provide access to the various adjustment points and facilitate a thoroughgoing adjustment. Initial Control Settings, described in paragraph 3-9, must be used for each adjustment. Exceptions to these settings will be noted as they occur. After completing an adjustment, return the 4193A's controls to the initial control settings. ## [BASIC OPERATING CHECK] Check that the instrument's line voltage selector switches, located on the rear panel, are set to the positions appropriate for the local line voltage. This should be performed before proceeding with any of the adjustments. After the recommended
60 minute warm-up period, the instrument should pass the SELF TEST (no error message should appear), and the initial control settings listed in paragraph 3-9 should be automatically set in preparation for measurements. If the instrument displays an error message or does not have the correct initial control settings, refer to the troubleshooting procedures given in Section VIII. ## [TOP COVER REMOVAL] - Fully loosen the top-cover retaining screw located at the rear of the top cover. - b. Slide the top cover towards the rear and lift off. #### WARNING DC VOLTAGES, ±15V AND ±5V, ARE PRESENT AT EXPOSED TERMINALS ON THE EXTRUSION BOARDS. DO NOT TOUCH THESE TERMINALS. AS A SAFETY PRECAUTION AGAINST POSSIBLE ELECTRICAL SHOCK HAZARDS AND RESULTANT INJURY, USE INSULATED TOOLS FOR ALL ADJUSTMENTS. ### 5-17. EXTRUSION BOARD REMOVAL 5-18. To prepare for a thoroughgoing adjustment, remove all screws securing the Al, A2, A3, A4, A6, and A8 extrusion boards. These boards will require removal at least once during adjustment. ## 5-19. BOARD EXTENSION 5-20. The extrusion boards are interconnected with SMB (female)-to-SMB (female) cables of various lengths, some of which are not long enough for connection to an extended board. When this situation occurs during adjustment or troubleshooting, use an extension cable, HP P/N: 04193-61630. ## Note The yellow cable between A1P2 and A4P2 has a precise electrical length matching that of the probe cable. DO NOT use a blue cable to connect A1P2 and A4P2. Table 5-2. Factory Selected Components | Component | Component Nominal Value Range Effect on Po | | |-----------------|---|---| | | | Sets the Crystal Oscillator frequency close to 100MHz. | | AlP2-A4P2 Cable | 10cm (HP P/N: 04193-61615, red) • 15cm (HP P/N: 04193-61616, yellow) 20cm (HP P/N: 04193-61617, blue) | Minimizes phase shift error at high frequencies caused by the cable length difference between V and I channels. | | A10C69 | 3.9pF (HP P/N: 0160-4518) • 4.7pF (HP P/N: 0160-3873) 5.6pF (HP P/N: 0160-4498) | Sets the VCO frequency range. | | AllRl | min: 0Ω
• 9.09k (HP P/N: 0757-0288)
max: 17.8kΩ | Narrows the INTEGRATOR offset adjustable range to facilitate the offset adjust-ment. | | AllR2 | min: 0Ω
• 9.09kΩ (HP P/N: 0757-0288)
max: 17.8kΩ | | •: typical value Table 5-3. Adjustment Requirements | | Assembly Repaired or Replaced | Required Adjustments | |----|--|-----------------------------| | A1 | Sampling PUlse Generator (SPG)
(P/N 04193-66501) | para. 5-28 thru 5-35. | | A2 | Automatic Level Control Amplifier (ALC AMP) (P/N 04193-66502) | para. 5-27 thru 5-35. | | А3 | V Channel Amplifier (V CHAN AMP)
(P/N 04193-66503) | para. 5-33 thru 5-35. | | A4 | I Channel Amplifier (I CHAN AMP) (P/N 04193-66504) | para. 5-31 thru 5-35. | | A5 | Mixer and Divider (MXR & DIVR)
(P/N 04193-66505) | para. 5-28 thru 5-35. | | A6 | Voltage Controlled Crystal Oscillator (VCXO) (P/N 04193-66506) | para. 5-25 thru 5-35. | | A7 | Divider (DIVIDER)
(P/N 04193-66507) | None. | | A8 | Crystal Oscillator (XTAL OSC)
(P/N 04193-66508) | para. 5-21 thru 5-35. | | | Mixer (MIXER)
(P/N 04193-66509) | None. | | | Voltage Controlled Oscillator (VCO) (P/N 04193-66510) | None. | | | Integrator (P/N 04193-66511) | para. 5-24 thru 5-35. | | | IF BPF
(P/N 04193-66512) | para. 5-30 thru 5-35. | | | Detector
(P/N 04193-66513) | para. 5-29 thru 5-35. | | | Analog-to-Digital Converter (P/N 04193-66514) | None. | | | Analog Output
(P/N 04193-66515) | para. 5-35 only. | | | HP-IB
(P/N 04193-66516) | None. | | | Control Logic
(P/N 04193-66517)
Display | None. | | | (P/N 04193-66518) POWER SUPPLY | None. para. 5-21 thru 5-35. | | | (P/N 04193-66520)
Delay | para. 5-28 and 5-35. | | | (P/N 04193-66541)
Probe I Channel | para. 5-25 and 5-35. | | | (P/N 04193-66551) Probe V Channel | para. 5-33 thru 5-35. | | | (P/N 04193-66552) | F==2. 5 55 52 5 50. | # 5-21. 100MHz REFERENCE FREQUENCY ADJUSTMENT (A8) PURPOSE: This adjustment sets the frequency of the 100MHz Crystal Oscillator to an accurate 100MHz. Figure 5-1. 100MHz Reference Frequency Adjustment Setup. # **EQUIPMENT:** ## PROCEDURE: - l. Disconnect the cable from A8P3 (10MHz CLK OUT). - 2. Connect the INPUT terminal of the 5382A to A8P3 (10MHz CLK OUT) as shown in Figure 5-1. - 3. Set the 5382A's controls as follows: - 4. Adjust A8C28 (100MHz ADJ) until the reading on the 5382A is 10MHz±10Hz. - 5. Reconnect the cable that was disconnected in step 1, and turn the 4193A off and on to return to normal operation. ## 5-22. 300MHz BPF ADJUSTMENT (A8) PURPOSE: This adjustment maximizes the level of the 300MHz signal output from the 300MHz BPF on the A8 board by setting the center frequency of the 300MHz BPF to 300MHz. Figure 5-2. 300MHz BPF Adjustment Setup. # **EQUIPMENT:** - l. Disconnect the cable from A8Pl (300MHz OUT). - 2. Connect the RF INPUT terminal of the spectrum analyzer to A8Pl (300MHz OUT) as shown in Figure 5-2. - 3. Set the spectrum analyzer's controls as follows: | 141T: | PERSISTANCE WRITING RATE | | | |--------|---|-------------------------------------|----------| | 8554B: | CENTER FREQUENCY | 300kHz
50MHz, PER | DIVISION | | 8552B: | SCAN TIME LOG REF LEVEL LOG REF LEVEL SWITCH LINEAR SENSITIVITY VIDEO FILTER SCAN MODE SCAN TRIGGER | 0dBm
10dB LOG
0
OFF
INT | | 4. Adjust A8C3 (BPF ADJ) until the level of the 300MHz spectral display on the 141T CRT is maximum. Refer to Figure 5-3. Note Leave all connections and control settings as they are, and proceed to paragraph 5-23. Figure 5-3. 300MHz Level. # 5-23. 300MHz OUTPUT LEVEL ADJUSTMENT (A8) PURPOSE: This adjustment sets the level of the 300MHz signal (output from the A8 BPF) supplied to the mixer on the A9 board. ### Note The adjustment described in paragraph 5--22 must be performed before this adjustment. # PROCEDURE: - 1. Use the same connections and control settings as those used in paragraph 5-22. - 2. Adjust A8Rl (LEVEL ADJ) until the level of the 300MHz spectral display on the 14lT CRT is -22dBm. Refer to Figure 5-4. Figure 5-4. 300MHz Level. #### 5-24. INTEGRATOR OFFSET ADJUSTMENT (A11) PURPOSE: This adjustment provides appropriate offset compensation for the integrator on the All board. Figure 5-5. Integrator Offset Adjustment Setup. # **EQUIPMENT:** ## PROCEDURE: - l. Turn off the 4193A. - 2. Extend the All board with an extender board. - 3. Turn on the 4193A. - 4. Move the jumpers AllJl and J2 from OPE to ADJ. - 5. Connect the INPUT terminal of the 3465B to AllTPl and chassis, as shown in Figure 5-5. - 6. Set the 3465B's controls as follows: 7. Adjust AllR3 (OFFSET) until the reading on the 3465B is -2mV±0.2mV. # Note If correct adjustment cannot be obtained in step 7, AllRl and AllR2 must be changed. Measure the voltage at AllTPl with AllR3 (OFFSET) set fully CCW and then fully CW. The reading on the 3465B at each setting should be lower than (more negative) 0mV and higher than (more positive) -3mV, respectively. If either reading is incorrect, replace AllRl and AllR2 as described in Table A and Table B. Then repeat step 7. 8. Replace AllJl and AllJ2 to their normal positions, OPE. # Table A | Reading on the 3465B | AllR1 | | A11 R2 | | |-------------------------|------------|-------------|----------------|-------------| | When AllR3 is Fully CCW | Resistance | HP Part No. | Resistance | HP Part No. | | OmV to -5mV | 10.0kΩ | 0757-0442 | 7.50kΩ | 0757-0440 | | -5mV to -15mV | 11.0kΩ | 0757-0443 | 6.81kΩ | 0757-0439 | | -15mV to -25mV | 12.1kΩ | 0757-0444 | 5.62kΩ | 0757-0200 | | -25mV to -35mV | 13.3kΩ | 0757-0289 | 4.64kΩ | 0698-3155 | | -35mV to -45mV | 14.7kΩ | 0698-3156 | 3.83k Ω | 0698-3153 | | -45mV to -55mV | 14.7kΩ | 0698-3156 | 2.87kΩ | 0698-3151 | | -55mV to -65mV | 16.2kΩ | 0757-0447 | 1.78kΩ | 0757-0278 | | -65mV to -75mV | 16.2kΩ | 0757-0447 | 825Ω | 0757-0421 | | -75mV to -85mV | 17.8kΩ | 0698-3136 | 0Ω | 8159-0005 | Table B | Reading on the 3465B | A11 R1 | | A11R2 | | |-------------------------|------------|-------------|------------|-------------| | When All R3 is Fully CW | Resistance | HP Part No. | Resistance | HP Part No. | | -3mV to +5mV | 7.50kΩ | 0757-0440 | 10.0kΩ | 0757-0442 | | +5mV to +15mV | 6.81kΩ | 0757-0439 | 11.0kΩ | 0757-0443 | | +15mV to +25mV | 5.62kΩ | 0757-0200 | 12.1kΩ | 0757-0444 | | +25mV to +35mV | 4.64kΩ | 0698-3155 | 13.3kΩ | 0757-0289 | | +35mV to +45mV | 3.83kΩ | 0698-3153 | 14.7kΩ | 0698-3156 | | +45mV to +55mV | 2.87kΩ | 0698-3151 | 16.2kΩ | 0698-3156 | | +55mV to +65mV | 1.78kΩ | 0757-0278 | 16.2kΩ | 0757-0447 | | +65mV to +75mV | 825Ω | 0757-0421 | 16.2kΩ | 0757-0447 | | +75mV to +85mV | 0Ω | 8159-0005 | 17.8kΩ | 0698-3136 | # 5-25. VCXO ADJUSTMENT (A6) PURPOSE: This adjustment sets the control voltage for the VCXO so as to set the center frequency of the VCXO to 100MHz. Figure 5-6. VCXO Adjustment Setup. # **EQUIPMENT:** | Frequency Counter | HP | 5340A | |--|----|-----------------| | DVM | HP | 3465B | | BNC (female)-SMB (female) adapter | HP | P/N 1250-1236 | | Extender Board | ΗP | P/N 04193-66561 | | Dual Banana Plug to Alligator Clip Cable | | | ## PROCEDURE: - l. Turn off the 4193A. - 2. Disconnect the cables from A6Pl (100MHz REF) and P2 (299.99MHz). - 3. Extend the A6 board with an extender board. - 4. Connect A6U5 pin 2 to ground. - 5. Turn on the 4193A. - 6. Connect the DVM input to A6TP6, and the 5340A input to A6P2. Refer to Figure 5-6. - 7. Confirm that the dc voltage at A6TP6 is $3.5V \pm 0.35V$. - 8. Adjust A6C8 (VCXO ADJ) until the 5340A displays 300MHz±300Hz. - 9. Remove the jumper from between
A6U5 pin 2 and ground and confirm that the 5340A displays 299.960MHz±15kHz. If the displayed frequency is out of range, adjust A6C8 until the 5340A displays 299.960MHz±15kHz and then return to step 8. - 10. Reinstall the A6 board to its normal position and reconnect the cables (step 2) to A6Pl and P2, respectively. # 5-26. BPF OUTPUT LEVEL ADJUSTMENT (A6) PURPOSE: This adjustment maximizes the level of the center frequency (299.990MHz) of the BPF on the A6 board which is supplied to the Mixer on the A5 board. Figure 5-7. BPF Output Level Adjustment Setup. # **EQUIPMENT:** l. - - 2. Courset the DE INDIE terminal of the spectrum analyzan to ASP2 (20 - 2. Connect the RF INPUT terminal of the spectrum analyzer to A6P2 (299.99MHz) as shown in Figure 5-7. - 3. Set the spectrum analyzer's controls as described in paragraph 5-22. Disconnect the cable from A6P2 (299.99MHz). 4. Adjust A6C7 (BPF ADJ) until the level of the 299.99MHz spectral display on the 141TCRT is maximum. # 5-27. A2 OUTPUT AMPLIFIER BIAS ADJUSTMENT (A2) PURPOSE: This adjustment sets the bias voltage for the output amplifier in order to minimize test signal distortion. Figure 5-8. A2 Output Amplifier Bias Adjustment Setup. # **EQUIPMENT:** # PROCEDURE: - l. Turn off the 4193A. - Extend the A2 board with the extender board. SMB connector cables need not to be connected to A2Pl and P2. - 3. Connect the INPUT terminal of the 3465B to A2TP2 as shown in Figure 5-8. - Turn on the 4193A. - 5. Set the 3465B's controls as follows: FUNCTION === \ RANGE 20V 6. Adjust A2R58 (BIAS ADJ) until the reading on the 3465B is $3V \pm 0.03V$. # 5-28. SAMPLING PULSE HEIGHT ADJUSTMENT (A1) PURPOSE: This adjustment sets the height of the V CHANNEL sampling pulse to that of the I CHANNEL sampling pulse in order to equalize sampling efficiency in both channels. * These cables should be of the same length and less than 30cm long. Figure 5-9. Sampling Pulse Height Adjustment Setup. ## **EQUIPMENT:** | Sampling Oscilloscope System | HP 180C/1811A | | |------------------------------------|------------------|------| | Sampling Head ····· | HP 30C | | | Pulse Generator | HP 8012B | | | Oscilloscope ······ | | | | 20dB Attenuator (TYPE N) | HP 8491A | 2ea. | | BNC (female)-TYPE N (male) Adapter | HP P/N 1250-1535 | 2ea. | | BNC (female)-SMB (female) Adapter | HP P/N 1250-1236 | 4ea. | | BNC T Adapter | HP P/N 1250-0781 | 2ea. | | BNC(male) - BNC(male) Cable | HP 11170C.7ea | | ### **PROCEDURE** - 1. Connect all instruments as shown in Figure 5-9. - 2. Set the instruments' controls as follows: | 4193A: | Trigger ····· | MAN/EXT | |--------|------------------------------------|-------------------| | | Other Controls | Initial Settings | | 8012B: | PULSE PERIOD(s) ······ | EXT | | | PULSE ····· | TIOICHILL | | | PULSE DELAY(s) ······ | 35n - lμ | | | PULSE WIDTH ····· | | | | TRANSITION TIME(s) ············· | $5n - 0.5\mu$ | | | AMPLITUDE (V) ······ | | | | OFFSET (V) ······ | | | | POLARITY ····· | | | | SYM/NORM/COMPL ······ | | | | INT LOAD | | | | All VERNIER Controls | | | 180C: | MAGNIFIER ····· | | | 10114 | DISPLAY | | | 1811A: | DISPLAY | | | | MODE | | | | POLARITY (Both Channels) | | | | mV/DIV (Both Channels) ··········· | 200 | | | EXPANDED/DIRECT TIME/DIV | DIRECT | | | EXPANDED TIME/DIV ······ | .05µsec
.5nsec | | | TRIGGER | AUTO | | | MANUAL/SWEEP ······ | | | | CW SLOPE | | | 1740A: | DISPLAY | ALT | | HAUM. | TRIGGER | A | | | CHAN A | | | | CHAN B | 2V/DIV (DC) | | | TIME/DIV ······ | 0.2usec | | | COUPLING | | | | = | - | - 3. Set the ground reference for CHAN A and CHAN B of the 1740A and the 180C as shown in (1) and (2), respectively, of Figure 5-10. - 4. Set the 8012B's AMPLITUDE VERNIER to $3V_P-P_0$. - 5. Set the $1740\,\mathrm{A}$'s coupling selectors to DC and confirm that the waveforms displayed on the $1740\,\mathrm{A}$ and $180\,\mathrm{C}$ are as shown in 3 and 4, respectively, of Figure 5-10. - 6. Adjust the 8012B's PULSE WIDTH VERNIER until the duty cycle of the CHAN B waveform is 50%, as shown in (5) of Figure 5-10. The 180C should be as shown in (6). - 7. Adjust the 8012B's PULSE DELAY VERNIER until the time difference between the peak of the CHAN A waveform and the trailing edge of the CHAN B pulse is 300ns, as shown in (7) of Figure 5-10. - 8. Rotate the 180C's INTENSITY control knob CCW until the sampling pulses and the marker are displayed on the 180C, as shown in (8) of Figure 5-10. - 9. Using the 1811A's POSITION control knob, position the marker at the sampling pulses, as shown in (10) of Figure 5-10. The 1740A's display should be as shown in (9) of Figure 5-10. - 10. Set the 1811A's TIME/DIV switch to EXPANDED, and adjust the POSITION control knob until the I CHANNEL and V CHANNEL sampling pulses are displayed on the 180C as shown in (2) of Figure 5-10. - ll. Adjust AlC3(Vp ADJ) until the height of the V CHANNEL sampling pulse is equal to the I CHANNEL sampling pulse height. - 12. Confirm that both pulse heights are more than 6.8V. Figure 5-10. Scope Displays (Sheet 1 of 2). Figure 5-10. Scope Displays (Sheet 2 of 2). ## 5-29. ALC REFERENCE VOLTAGE ADJUSTMENT (A13) PURPOSE: This adjustment sets the ALC reference voltage so as to supply a precise current level to the DUT. Figure 5-ll. ALC Reference Voltage Adjustment Setup. ## **EQUIPMENT:** DC Power Supply HP 6214A Digital Voltmeter HP 3465B Oscilloscope HP 1740A A12 BPF ADJ Board HP P/N 04193-66564 Extender Board HP P/N 04193-66561 Dual Banana Plug to Alligator Clip Cable HP 11002A,2ea ## PROCEDURE: - l. Turn off the 4193A. - 2. Remove the Al2 and Al3 boards. - 3. Set the switch on the Al2 BPF ADJ board to the I position. - 4. Set Al3Jl to the T position as shown below: - 5. Insert the Al3 board into the Al3 slot. - 6. Insert the extender board into the Al2 slot and insert the Al2 BPF ADJ board into the extender. - 7. Connect the 6214A to TP4 on the Al2 BPF ADJ Board as shown in the figure - 3. Connect Channel A of the 1740A to Al3TP2, and connect the 3465B to TP3 of Al2 BPF ADJ Board as shown in Figure 5-11. - 9. Turn on all the instruments and set their controls as follows: | 4193A: | TRIGGEROther Controls | | |--------|------------------------------------|-----------| | 6214A: | METER SELECTION | VOLTS | | 3465B: | FUNCTIONRANGE | | | 1740A: | DISPLAY TRIGGER VOLTS/DIV TIME/DIV | A
50mV | - 10. Adjust the 6214A until the reading on the 3465B is 0.707Vrms±lmVrms. - 11. Adjust Al3R1 (ALC BIAS) until the trace on the 1740A is 0V±100mV. ## Note If the IF BPF GAIN/PHASE ADJUSTMENT is to be performed immediately after this adjustment, do not reset A13J1 to the N position. # 5-30. IF BPF GAIN/PHASE ADJUSTMENT (A12) PURPOSE: This adjustment sets the gain and the center frequency of BPF's in the I and V/I channels on the Al2 board. Figure 5-12. IF BPF GAIN/PHASE Adjustment Setup. # **EQUIPMENT:** A12 BPF ADJ Board HP P/N 04193-66564 ### PROCEDURE: - l. Turn off the 4193A. - 2. Extend the Al2 board with the Al2 BPF ADJ board. Set Al3Jl to the T position. - 3. Turn on the 4193A. [I channel GAIN and PHASE Adjustment] - 4. Set Al2 BPF ADJ Sl to the I position. - 5. Adjust Al2Rl2 (PHASE I) until the displayed phase is -7.2 degrees±2 counts. - 6. Adjust Al2Rll (GAIN I) until the displayed magnitude is 100.00 ± 3 counts. [V/I Channel GAIN and PHASE Adjustment] - 7. Set Al2 BPF ADJ Sl to the V/I position. - 8. Adjust Al2R4 (PHASE V/I) until the displayed phase is -7.2 degrees ± 2 counts. - 9. Adjust Al2R3 (GAIN V/I) until the displayed magnitude is $100.0\Omega\pm3$ counts. Reset Al3J1 to the N position. # 5-31. I CHANNEL SAMPLING DIODE BIAS ADJUSTMENT (A4) PURPOSE: This adjustment sets the dc bias voltage applied to the I CHANNEL sampling diodes on the A5l board. BNC (female)-SMB (female) adapter BNC (male)-Dual Banana Plug Cable Figure 5-13. I Channel Sampling Diode DC Bias Adjustment Setup. ## **EQUIPMENT:** # PROCEDURE: - l. Turn off the 4193A. - 2. Disconnect the cables from A4Pl (E), A4P2 (I SP IN), and A4P3 (F). - 3. Extend the A4 board with the extender board. - 4. Connect the INPUT terminal of the 3465B to A4Pl (E) as shown in Figure 5-13. - 5. Set the 3465B's controls as follows: FUNCTION ······ == V RANGE ····· 20V - 6. Turn on the 4193A: Before turning on, check that the cables are not touching the DC supply terminal. - 7. Adjust A4R10 (IB) until the reading on the 3465B is -3.8V±20mV. - 8. Check that the voltage at A4P3 (F) is +3.8V±50mV. # 5-32. TEST SIGNAL LEVEL ADJUSTMENT (A4) PURPOSE: This adjustment is made on the ALC so as to supply the specified current to DUT. Figure 5-14. Drive Current Level Adjustment Setup. # **EQUIPMENT:** | RF Voltmeter | ΗP | 3406A | |-----------------------------|----|-----------------| | 50Ω TEE Adapter ······· | ΗP | 11063A | | 50Ω Termination (GR 874) | HP | P/N 0950-0090 | | BNC Adapter for 4193A ····· | ΗP | P/N 04193-61152 | | BNC (female)-GR 874 Adapter | | | ## PROCEDURE: - l. Connect the 3406A's probe to the 4193A's probe. Disconnect the cable from A1P1 (V SP). Extend the A4 board. - 2. Set the instruments' controls as follows: - 3. Adjust A4R30 (GAIN) until the reading on the 3406A is 5mV±.lmV. - 4. Confirm that the readings on the 3406A are 5mV±.5mV in the frequency range from .4MHz to 110MHz. ### 5-33. V CHANNEL SAMPLING DIODE BIAS ADJUSTMENT (A3) PURPOSE: This adjustment sets the dc bias voltage applied to the V CHANNEL sampling diodes on the A52 board. 5-20 Figure 5-15. V Channel Sampling Diode DC Bias Adjustment Setup. # **EQUIPMENT:** - l. Turn off the 4193A. - 2. Disconnect the cables from A3Pl (A), A3P2 (V SP IN) and A3P3 (B). - 3. Extend the A3 board with the extender board. - 4. Connect the INPUT terminal of the 3465B to A3P1 (A) as shown in Figure 5-15. - 5. Set the 3465B's controls as follows: - 6. Turn on the 4193A. - 7. Adjust A3R9 (VB) until the reading on the 3465B is -3.8V±20mV. - 8. Check that the voltage at A3P3 (B) is +3.8V±50mV. # 5-34. MAGNITUDE AND PHASE ACCURACY ADJUSTMENT (A3/A4/A41)
PURPOSE: This adjustment minimizes MAGNITUDE/PHASE measurement errors. Electrical length is also adjusted. Figure 5-16. Magnitude and Phase Accuracy Adjustment Setup. # **EQUIPMENT:** Calibration Standard HP16345A # PROCEDURE: - l. Insert the probe into the 100Ω standard of the 16345 A. - 2. Set the test frequency to 10MHz. - 3. Adjust A3R6 (MAG ADJ) until the value displayed on the MAGNITUDE display is $100.5\Omega\pm 1$ count. - 4. Adjust A4R6 (PHASE ADJ) until the value displayed on the PHASE display is 0.0 degrees±1 count. Note The displayed MAGNITUDE value may drift slightly out of the range specified in step 3 when the PHASE adjustment (step 4) is being performed. This is normal, and can be ignored for now. MAGNITUDE accuracy is readjusted in step 8. - 5. Set the test frequency to 100MHz, and insert the probe into the OPEN standard of the 16345A. - 6. Adjust A41 Delay Line (LENGTH ADJ) until the value displayed on the PHASE display is -90.0 degrees±1 count. - 7. Reperform steps 1, 2, 4, 5, and 6. - 8. Reperform steps 1, 2 and 3. ### Note If a 0.0° (step 4) or -90.0° (step 6) phase display cannot be obtained by adjusting PHASE ADJ, replace the cable between AlP2 and A4P2 with one of the cables listed below, and re-perform this adjustment: | HP Part No. | Cable Length | Remarks | |-------------|--------------|-----------------| | 04193-61615 | 10cm | Increases phase | | 04193-61616 | 15cm | Standard cable | | 04193-61617 | 20cm | Decreases phase | ## 5-35. RECORDER OUTPUT VOLTAGE ADJUSTMENT (A15) PURPOSE: This adjustment sets the recorder output voltages for MAGNITUDE, PHASE, and FREQUENCY. ### 4193A Figure 5-17. Recorder Output Voltage Adjustment Setup. # **EQUIPMENT:** l. Set the 3465B's controls as follows: FUNCTION = V RANGE 2 V | 2. | Connect the INPUT terminal of the 3465B to the MAGNITUDE RECORDER OUTPUT terminal of the 4193A (located on the rear panel). | |------|---| | 3. | The value displayed on the 3465B should be within ±20mV. | | 4. | Press the key on the 4193A. | | 5. | Adjust Al5R2 (M F.S. ADJ) until the reading on the 3465B is + 1V. | | 6. | Connect the INPUT terminal of the 3465B to the PHASE RECORDER OUTPUT terminal. | | 7. | Press the key. | | 8. | The value displayed on the 3465B should be within ±20mV. | | 9. | Press the key. | | 10. | Adjust Al5R3 (P F.S. ADJ) until the reading on the 3465B is + 1V. | | l l. | Connect the INPUT terminal of the 3465B to the FREQUENCY RECORDER OUTPUT terminal. | | 12. | Press the key. | | 13. | The value displayed on the 3465B should be within ±20mV. | | 14. | Press the key. | | l 5. | Adjust Al5Rl (F F.S. ADJ) until the reading on the 3465B is + 1V. | # SECTION VI REPLACEABLE PARTS ## 6-1. INTRODUCTION 6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-3 lists all replaceable parts in reference designator order. Table 6-2 contains the names and addresses that correspond to the manufacturer's code numbers. ### 6-3. ABBREVIATIONS 6-4. Table 6-1 lists abbreviations used in parts list, schematics and throughout the manual. In some cases, two forms of abbreviations are used, one in all capital letters, and one in partial capitals or no capitals. This occurs because the abbreviations in parts list are always all capitals. However, in the schematic and in other parts of the manual, other abbreviation forms with both lower case and upper case letters are used. ## 6-5. REPLACEABLE PARTS LIST 6-6. Table 6-3 is a list of replaceable parts and is organized as follows: - Electrical assemblies and their components in alphanumerical order by reference designation. - chassis-mounted parts in alphanumerical order by reference designation. - c. Miscellaneous parts. - d. Illustrated parts breakdowns, if appropriate. The information for each part includes: - a. The Hewlett-Packard part number. - b. The total quantity (Qty) in the instrument. - c. A description of the part. - d. A typical manufacturer of the part in a five-digit code. - e. The manufacturer's number for the part. Table 6-1. List of Reference Designators and Abbreviations | | | | REFERENCE DESIG | GNATORS | | | | |-------|----------------------------------|-------------|----------------------------|------------|---|---------|----------------------------| | A | = assembly | E | = misc electronic part | P | = plug | U | - integrated circuit | | В | = motor | F | = fuse | Q | = transistor | v | = vacuum, tube, neon | | BT | = battery | FL | = filter | R | = resistor | | bulb, photocell, etc. | | С | = capacitor | J | = jack | RT | = thermistor | VR | = voltage regulator | | CP | = coupler | K | = relay | S | = switch | w | = cable | | CR | = diode | L | = inductor | т | = transformer | x | = socket | | DL | = delay line | M | = meter | TB | = terminal board | Y | = crystal | | DS | = device signaling (lamp) | MP | = mechanical part | TP | = test point | | • | | | | | ABBREVIATI | ONS | | | | | A | = amperes | н | = benries | N PN | = negative-positive- | RWV | = reverse working | | | = automatic frequency control | HEX | = hexagonal | | negative | | voltage | | AMPL | = amplifier | HG | = mercury | NRFR | = not recommended for | | | | BFO | = beat frequency oscillator | HR | = hour(s) | | field replacement | | | | | = beryllium copper | Hz | = hertz | NSR | = not separately | S-B | = slow-blow | | вн | = binder head | IF | = intermediate freq. | | replaceable | SCR | = SCrew | | BP | = bandpass | IM PG | = impregnated | | | SE | = selenium | | BRS | = brass | INCD | = incandescent | OBD | order by description | SECT | = section(s) | | BWO | = backward wave oscillator | INCL | = include(s) | OH | = oval head | SEMICON | | | | | INS | = insulation(ed) | OX | = oxide | SI | = silicon | | CCW | = counter-clockwise | INT | = internal | | | SIL | = silver | | | = ceramic | | | | | SL | = slide | | CMO | = cabinet mount only | k | = kilo = 1000 | P | = peak | SPG | = spring | | | = coefficient | LH | = left hand | PC | | SPL | = special | | | = common | LIN | = linear taper | p | = printed circuit
= pico = 10 ⁻¹² | SST | = stainless steel | | | = composition | LK WASH | = lock washer | PHBRZ | - phosphor bronze | SR | = split ring | | | = complete | LOG | = logarithmic taper | PHL | - Phillips | STL | = steel | | | = connector | LPF | = low pass filter | PIV | = peak inverse voltage | | | | CP | = cadmium plate | | part times | PNP | = positive-negative- | TA | = tantalum | | CRT | = cathode-ray tube | m | = milli = 10 ⁻³ | • • • • | positive | TD | = time delay | | CW | = clockwise | M | = meg = 10 ⁶ | P O | = part of | TGL | = toggle | | | - deposited carbon | | = metal film | POLY | - polystyrene | THD | = thread | | DR | = drive | MET OX | = metallic oxide | PORC | porcelain | TI | = titanium | | FIFCT | = electrolytic | MFR | = manufacturer | POS | = position(s) | TOL | = tolerance | | | = electrolytic
= encapsulated | MINAT | - miniature | POT | = potentiometer | TRIM | = trimmer | | | = encapsulated
= external | MOM | = momentary | PP | = peak-to-peak | TWT | = traveling wave tube | | | | MTG | - mounting | PT | = point | | | | F | = farads | MY | = "mylar" | PWV | = peak working voltage | μ | = micro = 10 ⁻⁶ | | ſ | = femto = 10 ⁻¹⁵ | n | = nano = 10 ⁻⁹ | | | VAR | = variable | | FH | : flat head | n
N C | | | | VDCW | a dc working volts | | | = fillister head | N C | normally closed | DECT | | w | - | | FXD | = fixed | NE
NI PL | = neon | RECT | z rectifier | w | = with | | G | : giga = 10 ⁹ | N O | nickel plate | RF | radio frequency | wiv | = watts | | | = germanium | N PO | normally open | RH | = round head or | WIA | working inverse | | | glass | N PO | negative positive zero | 8140 | right hand | ww | voltage
= wirewound | | | - grass | | (zero temperature | RMO
RMS | : rack mount only | w o | = wirewound
= without | | 31.5 | F. condital | | coefficient) | KM2 | : root-mean square | w U | - without | The total quantity for each part is given only once--at the first appearance of the part number in the list. Part numbers for the shield cases, screws, cable clamps, and cables (except for wiring on a board) on each board assembly, are not listed in Table 6-3. If required these parts must be ordered separately when ordering a complete board assembly. They are listed in Table 6-4 and 6-5 as Board Mounted Hardware and Cable Assemblies respectively. ### 6-7. ORDERING INFORMATION - 6-8. To order a part listed in the replaceable parts table, give the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office. - 6-9. To order a part that is not listed in the replaceable parts table, state the full instrument model and serial number, and description and function of the part, and the number of parts required. Address your order to the nearest Hewlett-Packard office. #### 6-10. SPARE PARTS KIT 6-ll. Stocking spare parts for an instrument is often done to insure quick return to service after a malfunction occurs. Hewlett-Packard has a Spare Parts Kit available for this purpose. The kit consists of selected replaceable assemblies and components for this instrument. The contents of the kit and the Recommended Spares List are based on failure reports and repair data, and parts support for one year. A complimentary Recommended Spares List for this instrument may be obtained on request and the Spare Parts Kit may be ordered through your nearest Hewlett-Packard office. ## 6-12. DIRECT MAIL ORDER SYSTEM - 6-13. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are: - Direct ordering and shipment from the HP Parts Center in Mountain View, California. - b. No maximum or minimum on any mail
order (there is a minimum order amount for parts ordered through a local HP Office when the orders require billing and invoicing). - c. Prepaid transportation (there is a small handling charge for each order). - d. No invoices—to provide these advantages, a check or money order must accompany each order. 6-14. Mail order forms and specific ordering information are available through your local HP Office. Addresses and phone numbers are located at the back of this manual. | Table 6-2. | Manufacturers | Code Li | sts | |------------|---------------|---------|-----| |------------|---------------|---------|-----| | MFR
NO. | MANUFACTURER NAME | ADDRESS | ZIP
CODE | | |---|---|--|---|-------------------------| | NO. 000000 01121 01295 01928 02111 02114 02768 03888 04713 06583 06665 07716 19701 24046 24355 24546 26654 27014 27167 28480 51642 56289 72136 72982 74970 | ANY SATISFACTORY SUPPLIER ALLEN-PRADLEY CO TEXAS INSTR INC SEMICOND CMPNT DIV RCA CORP SOLID STATE DIV SPECTROL ELECTRONICS CORP FERROXCUBE CORP ILLINDIS TOOL WORKS INC FASTEX DIV KDI PYROFILM CORP MOTOROLA SEMICONDUCTOR PRODUCTS PANDUIT CORP PRECISION MONOLITHICS INC TRW INC BURLINGTON DIV MEPCO/ELECTRA CORP TRANSITRON ELECTRONIC CORP ANALOG DEVICES INC CORNING GLASS WORKS (BRADFORD) VARADYNE INC NATIONAL SEMICONDUCTOR CORP CORNING GLASS WORKS (WILMINGTON) HEWLETT-PACKARD CO CORPORATE HG CENTRE ENGINEERING INC SPRAGUE ELECTRIC CO ELECTRO MOTIVE CORP SUB IEC ERIE TECHNOLOGICAL PRODUCTS INC JOHNSON E F CO | MILWAUKEE DALLAS SOMERVILLF CITY OF IND SAUGFRTIES DFS PLAINES WHIPPANY PHOENIX TINLEY PARK SANTA CLARA BURLINGTON MINERAL WHELS WAKEFIELD NORWOOD BRADFORD SANTA HONICA SANTA CLARA WILMINGTON PALO ALTO STATE COLLEGE NORTH ADAMS WILLIMANTIC ERIE | WI
TX
NJ
CAY
ILA
ILA
ILA
ILA
ILA
ILA
ILA
ILA
ILA
ILA | | | 75915
8E175
98291 | LITTELFUSE INC
BURR BROWN CO
SEALECTRO CORP | DES PLAINES
HUNTSVILLE
MAMARONECK | IL
AL
NY | 60016
35801
10544 | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |---|--|-----------------------|------------------|--|---|--| | A1 | | | | | | | | A1 | 04193-66501 | 0 | 1 | SAMPLING PHILLS GENERATOR IMARD ASSEMBLY | 2818 0 | 04193-66501 | | A101
A102
A103
A104
A105 | 0160-2437
0160-2437
0121-0453
0160-4791
0180-0116 | 1
5
4
1 | 2
1
1
2 | CAPACITOS FETHAL 5000PE +80 -26% 2009
CAPACITOR COTHRU 5000PE +80 -20% 2009
CAPACITOR V TAMA AIR 1.3 5.4PF 1259
CAPACITOR FXD 10PE + 5% 1009DC CER 1) 30
CAPACITOS EXO 6.8UE +10% 359DC TA | 23488
23489
24220
28480
55282 | 0165-2437
0169-2437
187-0303-125
J160-4791
1501685X903562 | | A1C6
A1C7
A1E8
A1C9
A1C10 | 0180 0116
0160-4793
0160-3127
0160-0174
0160-0174 | 1
7
2
9 | 1
5
4 | CAPACITOR-FXD 6.CUFF 19% 350DC TA
CAPACITO2-FXD 5.60F +50T 1660DC CFR
CAPACITOR FXD 1UF +-20% 350DC CFR
CAPACITOR-FXD 47UF +80-21% 250ADC CCR
CAPACITOR-FXD .47UF +80-21% 250DC CCR | 55269
28420
28480
28480
28480 | 15/D665X903582
0169-4794
0169-0122
0165-0124
0169-0174 | | A1011
A1012
A1013
A1014
A1015 | 0160-0174
0180-0394
0180-1061
0160-0127
0160-0127 | 9
4
7
2 | t
2 | CAPACTION FX0 .47UF +80-20% 25VDC OFF
CAPACTION-FXD LURDFF25-10% 25VDC AL
CAPACTION FX0 226 UF 16VDC AL
CAPACTION FXD TUTH + 70% 25VDC FAR
CAPACTION FXD TUTH + 20% 25VDC CFR | 23480
56589
23480
28480
23480 | 0165 6174
30D1076025602
6186 1061
0160-0127
6166 0127 | | A1016
A1017
A1018
A1019
A1020 | 0160-0124
0160-0127
0160-0127
0160-0127
0180-2981
0160-4835 | 9
2
2
7
7 | 2 | PAPACITOR-FX0 .450F 180 20% 2500C FER
CAPACITOR-FXD 10° +-20% 2500C CER
PAPACITOR FX0 10° +-20% 2500C CER
CAPACITOR FX0 220 UE 1000C AL
CAPACITOR FX0 .10° + 10% 5000C CER | ###################################### | 0160-0174
6166-6127
0160-0127
0160-1061
0160-4635 | | A1021
A1022
A1023 | 0160-0127
0160-4301
0160-4835 | 2
7
7 | i | CAPACITUS-FXD 1UF + 26% 28VAC CFR
CAPACITOR FXD 1980F + 5% 100 CFR
CAPACITUS FXD 1UF + 10% 56VAC CFR | 28480
28480
28480 | 0160-0127
0160-4801
0169-4835 | | A10R1
A10R2
A10R3
A10R4 | 1901-0179
1901-0179
1901-0441
1901-0640 | 7
7
6
1 | 2)
1
1 | DIODE-SWITCHING 15V 58MA 25325 DD-2
DIODE-SWITCHING 15V 56MA 25625 DO-2
DIODE-STEP RECOVERY
DIODE-SWITCHING 36V 56MA 2NS DO-35 | 28480
28488
28480
28480
28486 | 1931-0199
1931-0179
1931-3441
1931-6646 | | A1L1
A1L2 | 9140-0114
9100-3139 | 4 | 1 | INDUCTOR RE-CH-MOD 180H 10% .166DX555US
INDUCTOR 750H 15% .50X.875 G | 28480
28480 | 9140-1114
9160-3139 | | A1Q1 | 1854 - 0247 | 9 | 6 | THARESTER WENT IN 10-39 PDHIR STERRART | £8480 | 1654-0247 | | A192 | 1854-0247 | 2 | | ZHACES=TH WI=65 0E TO DEW SOTETCHART | £2.480 | 1654-9247 | | A1Q3 | 1554-9919 | 3 | 1 | TRANSTSTOR NPN ST 10-18 20=260mW | 78480 | 1004-0019 | | A194
A195 | 1854-0247
1853-0010 | 2 | ટ | 186WSISTOR NPN SI TO 39 PD=1W FT=836KHZ
186WSISTOR PNP SI TO 18 PD=266KW | 28480
28480 | 1854-9247
1853-9910 | | A106 | 1853-9010 | 2 | | TRANSISION PWP ST TO 18 20-360MW | 28 48 0 | 14-5-3-9-3-1-9 | | A197 | 1854-0247 | 9 | | TRANSISTOR NEW ST TO 32 PD=1W FT=860HdZ | 28430 | 1814-0247 | | AlQ8 | 1954-0247 | 9 | | TRANSISTOR NPN ST TO-32 PD=1W FT=856M/Z | 28480 | 1854-6247 | | A1Q7 | 1854-0247 | 9 | | TRANSISTOR NON ST TO 39 PD::1W FT=866MH7 | 20480 | 1844-6247 | | A1Q10 | 1853-0015 | 7 | 1 | TRANSISTOR PNP ST PD=200mW FT=500m4Z | 28490 | 1822 0612 | | A1R1
A1R2
A1R3
A1R4
A1R5 | 0683-4725
0683-6815
0683-4725
0693-5605
0757-0420 | ខាងខេង | ?
?
7
1 | RESTSTOR 4.2K 52 .25W FC 10=-4007F200
RESISTOR 680 52 .25W FC 10=-4007F60
RESISTOR 4.7K 52 .25W FC 10=-4007F00
RESISTOR 56 52 .25W FC 10=-4007F500
RESISTOR 250 12 .125W F 10=0+ 100 | 01121
01121
01121
01121
24546 | 0.94705
067015
084745
065705
04-178: T0-751 F | | A1R6
A1R7
A1R8
A1R9
A1R10 | 0757-0442
0643-5605
0693-5605
0693-5605
0693-5605 | 9
9
9
9 | 1 | RESISTOR 10K 1½ ,125W F TC≃0+-160
RESISTOR 56 5% ,25W (C TC=-4302/500
RESISTOR 56 5% ,25W FC TC=-4602+500
RESISTOR 56 5% ,25W FC TC=-4082+500
RESISTOR 56 5% ,25W FC TC=-4082+500 | 24546
01321
01321
01321
01321 | 04-128-T0 LUCP F
L60605
CN-265
CB5A-55
CR5A-95 | | A1R11
A1R12
A1R13
A1R14
A1R15 | 0757-0280
0757-0461
0758-3153
0693-5605
0757-0277 | 3 0 9 9 3 | 7)
1
1 | RESISTOR 1K 1Z .105W F T0=0+ 100
RESISTOR 100 1Z .125W F T0=0+-160
8ESISTOR 3.83K 1Z .125W F T0=0+110
RESISTOR 5.5 % .25W F T0=46EZ+500
RESISTOR 49.9 (Z .125W € TC=0+ 190 | 24546
24546
24546
61121
24546 | 04 178 10-1001 F
04 178 10 101 C
04 178-10-3831 F
04-178-10-4922 F | | A1R16
A1R17
A1R18
A1R19
A1R20 | 6757-0417
0883-2705
6757-0346
0883-2705
0757-0346 | 84242 | 1
2
2 | RESISTOR 562 1% .125W F TC=0+ 100
RESTSTOR 27 5% .25W FC TC= 433Z+530
RESTSTO3 10 1% .125W F TC=6+-100
RESTSTOR 27 5% .25W FC TC=43Z+530
RESISTOR 10 1% .125W F TC=6+-100 | 24546
91121
24546
91121
24546 | C4 1/8-F6-5/°R F
C/2735
C4 1/8 T6 LGRC F
C/2735
C4 1/8 T6 LGRC-F | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |---|---|-----------------------|-------------------|---|---|--| | A1R21
A1R22
A1R23
A1R24
A1R25 | 0693~6815
0757~0230
0683~5605
0698~3613
0698~3613 | 5
3
9
6
6 | ru . | RESISTOR 680 5% .25W FC TC=-400/+600
RESISTOR 1K 1% .125W F TC=0+-100
RESISTOR 56 5% .25W FC TC=-400/+500
RESISTOR 37 5% 2W MO TC=0+-200
RESISTOR 37 5% 2W MO TC=0+-200 |
01121
24546
01121
27167
27167 | CR4815
C4-1/8-T0-1001-F
C%5605
FP42-2-T00-39R0-J
FP42-2-T00-39R0-J | | | 04193-26501 | 0 | 1 | PCBD BLANK | 28480 | 04193-26501 | | | 9170-0029
1205-0050
04193-60001
04193-61623 | 7 | .6
2
1
1 | MISCELLANCOUS PARTS CORE-SHIELDING BEAD HEAT SINK TO-5/TO-39-CS COVER CABLE ASSEMBLY PCD ASSEMBLY-DELAY | 28480
28480
28480
28480 | 9170-0029
1205-0050
04193-60301
04193-61623 | | A1R26
A1R27 | 2100-3212
0757-0442 | , | 1 | RESISTOR -TRMR 200 10%
RESISTOR 10K 1% 125W | 28480 | 04193-66541 | | | | | | | | | | | | | | | | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |--|---|-----------------------|--------------|--|--|--| | A2 | | | | | | | | A₽ | 04193-66502 | 1 | 1 | ALC AMPLIFIER BOARD ASSEMBLY | 28480 | 04193-66502 | | A201
A202
A203
A204
A205 | 0160-2437
0160-2437
0160-4387
0160-4832
0160-4835 | 1
1
4
4
7 | 2
7
23 | CAPACITOR-FDTHRU 5000PF +80 -20% 200V CAPACITOR-FDTHRU 5000PF +80 -20% 200V CAPACITOR FXD 47PF +-5% 200VDC CFR 0+-30 CAPACITOR-FXD .01UF +-10% 100VDC CFR CAPACITOR-FXD .1UF +-10% 50VDC CFR | 28480
28480
28480
28480
28480
28480 | 0160-2437
0160-2437
0160-4387
0160-4832
0160-4835 | | A206
A207
A208
A209
A2010 | 0160-4387
0160-4835
0160-0263
0160-4835
0160-4835 | 4
7
7
7
7 | 2 | CAPACITOR-FXD 47PF +-5% 200VDC CER 0+-30
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .22UF +-20% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER | 28480
28480
28480
28480
28480 | 0160-4387
0160-4835
0160-0263
0160-4835
0160-4835 | | A2011
A2012
A2013
A2014
A2015 | 0160-4835
0160-4835
0160-4835
0160-4832
0160-4835 | 7
7
7
4
7 | | CAPACITOR-FXD .1UF +-10% 50VDC CFR CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CFR CAPACITOR-FXD .1UF +-10% 50VDC CER | 28480
28480
28480
28480
28480 | 0160-4835
0160-4835
0160-4835
0160-4832
0160-4835 | | A2016
A2017
A2018
A2019
A2020 | 0160-0263
0160-4835
0160-4835
0160-4835
0160-4835 | 7 7 7 7 7 | | CAPACITOR-FXD .72UF +-20% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER | 28480
28480
28480
28480
28480 | 0160-0263
0160-4835
0160-4835
0160-4835
0160-4835 | | A2021
A2022
A2023
A2024
A2025 | 0160-4832
0160-4835
0160-4835
0160-4832
0160-4835 | 4
7
7
4
7 | | CAPACITOR-FXD .01UF +-10% 100VDC CFR CAPACITOR-FXD .1UF +-10% 50VDC CFR CAPACITOR-FXD .1UF +-10% 50VDC CFR CAPACITOR-FXD .01UF +-10% 100VDC CFR CAPACITOR-FXD .1UF +-10% 50VDC CFR | 28480
28480
28480
28480
28480 | 0160-4832
0160-4835
0160-4835
0160-4832
0160-4835 | | A2026
A2027
A2028
A2029
A2030 | 0160-4835
0160-4835
0160-4835
0160-4787
0160-4835 | 7 7 7 | | CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 22PF CAPACITOR-FXD .1UF +-10% 50VDC CER | 28480
28480
28480
28480 | 0160-4835
0160-4835
0160-4835
0160-4787
0160-4835 | | A2C31
A2C32
A2C33
A2C34
A2C35 | 0160-4835
0160-4832
0160-4835
0180-0116
0160-4792 | 7
4
7
1
5 | | CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .01UF +-10% 100VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CFR
CAPACITOR-FXD 6.8UF+-10% 35VDC
CAPACITOR-FXD 8.2PF +5PF 100VDC CER | 28480
28480
28480
56289
28480 | 0160-4835
0160-4835
0160-4835
1500685X9035B2
0160-4792 | | A2036
A2037
A2038
A2039
A2040 | 0160-4835
0180-1083
0180-0197
0160-4835
0160-4832 | 7
3
8
7
4 | 2
1 | CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD 33UF 25VDC AL
CAPACITOR-FXD 2.2UF+-10% 20VDC TA
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .0UF +-10% 100VDC CER | 28480
28480
56289
28480
28480 | 0160-4835
0180-1083
150D225X9020A2
0160-4835
0160-4832 | | A2041
A2042 | 0160-4832
0180-1083 | 4 3 | | CAPACITOR-FXD .01UF +-10% 100VDC CER
CAPACITOR-FXD 33UF 25VDC AL | 28480
28480 | 0160-4832
0180-1083 | | A2CR1
A2CR2
A2CR3
A2CR4
A2CR5 | 1901-0639
1901-0639
1901-0639
1901-0639
1901-0639 | 4 4 4 4 4 | 8 | DIODE-PIN
DIODE-PIN
DIODE-PIN
DIODE-PIN
DIODE-PIN | 28480
28480
28480
28480
28480 | 5082~3080
5082~3080
5082~3080
5082~3080
5082-3080 | | ARCR6
ARCR7
ARCR8
ARCR9
ARCR10 | 1901-0639
1901-0639
1901-0639
1901-0040
1901-0040 | 4 4 1 1 | 3 | DIODE PIN
DIODE PIN
DIODE PIN
DIODE SWITCHING 30V SOMA 2NS DO-35
DIODE SWITCHING 30V SOMA 2NS DO-35 | 28480
28480
28480
28480
28480 | 5082-3080
5082-3080
5082-3080
1901-0040
1901-0040 | | APCR11
A2CR12 | 1901-0040
1902-3005 | 1 6 | 1 | DIODE-SWITCHING 30V 50MA 2NS DO-35
DIODE-7NR 2.43V 5% DO-7 PD=.4W TC=076% | 28480
28 48 0 | 1901-0040
1902-3005 | | ARJ1 | 1251-5862 | 6 | 1 | CONNECTOR 4-PIN M METRIC POST TYPE | 28480 | 1251-5862 | | A2K1
A2K2 | 0490-1269
0490-1269 | 4 | 2 | RELAY 10 12VDC-COTL .66A 30VDC
RELAY 10 12VDC-COIL .66A 30VDC | 28480
28480 | 0490-1269
0490-1269 | | A2L1
A2L2
A2L3
A2L4 | 9100-1615
9100-1615
9100-1615
9100-1615 | 8 8 | 4 | INDUCTOR RE-CH-MLD 1.2UH 10%
INDUCTOR RE-CH MLD 1.2UH 10%
INDUCTOR RE-CH-MLD 1.2UH 10%
INDUCTOR RE-CH-MLD 1.2UH 10% | 28480
28480
28480
28480 | 9100~1615
9100-1615
9100-1615
9100-1615 | | ARL6
ARL7
ARL8 | 2100-1618
9100-1618
2100-2249 | 1 1 6 | 2 | INDUCTOR RE-CH-MLD 5.6UH 10%
INDUCTOR RE-CH-MLD 5.6UH 10%
INDUCTOR RE-CH-MLD 150NH 10% .105DX.26LG | 28480
28480
28480 | 9100-1618
9100-1618
9100-2249 | | A201
A202
A203
A204
A205 | 1854-0345
1854-0810
1854-0345
1854-0810
1854-0345 | 8 2 8 2 8 | | TRANSISTOR NPN 2N5179 SL TO-72 PD=200MW TRANSISTOR NPN SI PD=625MW FT=200MHZ TRANSISTOR NPN 2N5179 SL TO-72 PD=200MW TRANSISTOR NPN SI PD=625MW FT=200MHZ TRANSISTOR NPN SI PD=625MW FT=200MHZ TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW | 0 4713
28480
0 4713
28480
0 4713 | 2N5179
1854-0810
2N5179
1854-0810
2N5179 | Table 6-3. Replaceable Parts | Reference | HP Part | | | Table 6-3. Heplaceable Parts | 1000 | | |---|---|-----------------------|-----------------------|--|---|--| | Designation | Number | CD | Qty | Description | Mfr
Code | Mfr Part Number | | A206
A207
A208 | 1854-0345
1854-0345 | 8 | | TRANSISTOR NPN 2N5179 ST TD-72 PD=200MW
TRANSISTOR NPN 2N5179 ST TD-72 PD=200MW | 04713
04713 | 2N5179
2N5179 | | A209
A2010 | 1854-0247
1854-0597
1854-0597 | 2 | 2 | TRANSISTOR NPN TRANSISTOR NPN 2N5943 ST TO-39 PD=1W TRANSISTOR NPN 2N5943 ST TO-39 PD=1W | 04713
04713 | 2N5943
2N5943 | | A2R1
A2R2
A2R3
A2R4
A2R5 | 0683-4705
0683-5605
0698-3152
0757-0428
0683-6815 | 8
9
8
1
5 | 5
1
2
2
3 | RESISTOR 47 5% .25W FC TC=-400/+500
RESISTOR 56 5% .25W FC TC=-400/+500
RESISTOR 3.48K 1% .125W F TC=0+-100
RESISTOR 1.62K 1% .125W F TC=0+-100
RESISTOR 680 5% .25W FC TC=-400/+600 | 01121
01121
24546
24546
01121 | CR4705
CB5A05
C4-1/8-T0-3481-F
C4-1/8-T0-1621-F
CD6815 | | A2R6
A2R7
A2R8
A2R9
A2R10 | 0683-2215
0683-2215
0698-4037
0698-3152
0757-0428 | 1
1
0
8
1 | 5
1 | REGISTOR 220 5% .25W FC TC=-4007+600
RESISTOR 220 5% .25W FC TC=-4007+600
RESISTOR 46.4 1% .125W F TC=0+-100
RESISTOR 3.48K 1% .125W F TC=0+-100
RESISTOR 1.62K 1% .125W F TC=0+-100 | 01121
01121
24546
24546
24546 | CB2215
CD2215
C4 1/8-T0-46R4-F
C4 1/8-T0-3481-F
C4 1/8-T0-1521-F | | A2R11
A2R12
A2R13
A2R14
A2R15 | 0757-0394
0698-3155
0698-3155
0683-4705
0683-2215 | 0
1
1
8
1 | 3
4 | RESISTOR 51.1 1% .125W F TC=0+-100
RESISTOR 4.64K 1% .125W F TC=0+-100
RESISTOR 4.64K 1% .125W F TC=0+-100
RESISTOR 42 5% .25W FC TC=-400/4500
RESISTOR 22 5% .25W FC TC=-400/4600 | 24546
24546
24546
01121
01121 | C4 1/8-T0-51R1-F
C4 1/8-T0-4641-F
C4-1/R-T0-4641-F
CB4705
CB2715 | | A2R16
A2R17
A2R18
A2R19
A2R20 | 0683-6815
0698-4386
0683-2215
0757-0394
0698-3155 | 5
2
1
0
1 | 1 | RESISTOR 680 5% .25W FC TC=-400/+600
RESISTOR 59 1% .125W F TC=0+-100
RESISTOR 220 5% .25W FC TC=-400/+600
RESISTOR 51.1 1% .125W F TC=0+-100
RESISTOR 4.64K 1% .125W F TC=0+-100 | 01121
24546
01121
24546
24546 | C86815
C4-178-T0-59R0-F
C82215
C4-178-T0-5JR1-F
C4-178-T0-4641-F | | A2R21
A2R22
A2R23
A2R24
A2R25 |
0698-3155
0757-0417
0757-0280
0698-4442
0698-4014 | 1
8
3
1
3 | 1
1
3
1 | RESISTOR 4.64K 1% .175W F TC=0+-100
RESISTOR 562 1% .125W F TC=0+ 100
RESISTOR 1K 1% .125W F TC=0+-100
RESISTOR 4.42K 1% .125W F TC=0+-100
RESISTOR 787 1% .125W F TC=0+-100 | 24546
24546
24546
24546
24546 | C4 1/8-T0-4/41-F
C4 1/8-T0-562R-F
C4 1/8-T0-1001-F
C4 1/8-T0-4421-F
C4-1/8-T0-727R-F | | A2R26
A2R27
A2R28
A2R29
A2R30 | 0628-4469
0698-4442
0757-0422
0698-4442
0683-4705 | 2
1
5
1
8 | 2
1 | RESISTOR 1.15K 1% .125W F TC=0+-100
RESISTOR 4.42K 1% .125W F TC=0+-100
RESISTOR 909 1% .125W F TC=0+-100
RESISTOR 4.42K 1% .125W F TC=04100
RESISTOR 4.7 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% | 24546
24546
24546
24546
01121 | C4 1/8-T0-1151-F
C4-1/8-T0-4421-F
C4-1/8-T0-909R F
C4-1/8-T0-4421-F
C84705 | | A2R31
A2R32
A2R33
A2R34
A2R35 | 0683-2215
0698-3432
0757-0412
0757-0409
0683-1005 | 1
7
3
8
5 | 1
1
1 | RESISTOR 220 5% .25W FC TC=-400/+600
RESISTOR 26.1 1% .125W F TC=0+-100
RESISTOR 365 1% .125W F TC=0+-100
RESISTOR 274 1% .125W F TC=0+-100
RESISTOR 10 5% .25W FC TC=-400/+500 | 01121
03388
24546
24546
01121 | CB2215
PME55 1/8-T0-26R1-F
C4-1/8-T0-3/5R-F
C4-1/8-T0-274R-F
CB1085 | | A2R36
A2R37
A2R38
A2R39
A2R41 | 0698-4469
0698-3443
0683-1015
0698-3444
0683-5615 | 2
0
0
1
5 | 1
1
1 | RESTSTOR 1.15K 1% .125W F TC=0+-100
RESTSTOR 207 1% .125W F TC=0+-100
RESTSTOR 100
RESTSTOR 316 1% .125W F TC=0+-100
RESTSTOR 560 | 24546
24546
24546 | C4 1/8-T0-1151-F
C4-1/8-T0-2878-F
C4-1/8-T0-316R-F | | A2R42
A2R43
A2R44
A2R45
A2R45 | 0683-4705
0698-3402
0698-3402
0683-1055
0698-4413 | 8
1
1
5
6 | 2
1
2 | RESISTOR 47 5% .25W FC TC=-400/+500
RESISTOR 316 1% .5W F TC=0+-100
RESISTOR 316 1% .5W F TC=0+-100
RESISTOR 1M 5% .25W FC TC=-800/+900
RESISTOR 154 1% .125W F TC=0+-100 | 01121
28480
28480
01121
24546 | CB4705
0698-3402
0698-3402
081055
C4-078-T0-154R-F | | A2R47
A2R48 | 0698-4413
068 3-4 705 | 6
8 | | RESISTOR 154 1% .125₩ F TC=0+-100
RESISTOR 47 5% .25₩ FC TC=-400/+500 | 24546
01121 | C4 -1/8-T0-154R-F
CB4705 | | A2R49
A2R50 | 0698-3437
0698-3437 | 2 | 4 | RESISTOR 133 1% .125W F TC=0+-100
RESISTOR 133 1% .125W F TC=0+-100 | 24546
245 46 | C4-1/8-T0-133R-F
C4-1/8-T0-133R-F | | A2R51
A2R52
A2R53
A2R54
A2R55 | 0698-3437
0628-3437
0683-1215
0257-0394
0683-3315 | 2 2 2 4 | 1 | RESISTOR 133 1% .125W F TC=0+-100
RESISTOR 133 1% .125W F TC=0+ 100
RESISTOR 120 5% 25W FC TC=-4001+600
RESISTOR 51.1 1% .175W F TC=0+-100
RESISTOR 330 5% .25W FC TC=-4007+600 | 24546
24546
01121
24546
01121 | C4-1/8-T0-133R-F
C4-1/8-T0-133R-F
C81215
C4-1/8-T0-51R1-F
CR3315 | | A2R56
A2R57
A2R58 | 0698-4460
0698-4467
2100-0567 | 3 0 | 1 1 1 | RESISTOR 649 1% .125W F TC=0+-100
RESISTOR 1.05K 1% .125W F TC=0+-100
RESISTOR-TRMR 2K 10% C TOP ADJ 1-TRN | 24546
24546
28 480 | C4 1/8-T0-642R-F
C4-1/8-T0-1051-F
2100-0567 | | A2U1
A2U2 | 1820-1144
1820-0471 | 6 0 | 1 1 | IC GATE TTL LS NOR QUAD 2-INP
IC INV TTL HEX 1-INP | 01295
01295 | SNZ4LS02N
SNZ4LS02N
SNZ406N | | | 1205-0050
5001-0176
04193-60002 | 7 7 | 2
2
1 | HEAT SINK TO-5/TO-39-CS
STRAP-GROUND
COVER | 28480
28480
28480 | 1205-0050
5001-0173
04193-60002 | | | 04193-26502 | 0 | 1 | PCBD BLANK | 28480 | 04193-26502 | | A2W1 | 8159-0005 | | 1 | JUMPER | | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |---|--|-----------------------|------------------|---|---|---| | A3 | | | | | | | | A3 | 04193-66503 | 1 | 1 | V-CHANNEL AMPLIFTER BOARD ASSEMBLY | 28480 | 04193-66503 | | A301
A302
A303
A304
A305 | 0160-0570
0160-3877
0160-0570
0160-3877
0160-3878 | 2
5
2
5
6 | 2 2 | CAPACITOR FXD 220FF +-20% 100VDC CER CAPACITOR-FXD 100FF + 20% 100VDC CER CAPACITOR-FXD 220FF + 20% 100VDC CER CAPACITOR-FXD 100VFF +-20% 100VDC CER CAPACITOR-FXD 1000FF +-20% 100VDC CER | 28480
28480
28480
28480
28480
28480 | 0160-0570
0160-3877
0160-0570
0160-3877
0160-3878 | | A3C6
A3C7
A3C8
A3C9
A3C10 | 0160-4835
0160-0127
0160-0127
0180-1083
0160-4386 | 7
2
2
3
3 | 6
3
5
1 | CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .UF +-20% 25VDC CER CAPACITOR-FXD .1UF +-20% 25VDC CER CAPACITOR-FXD .30F 25VDC AI CAPACITOR-FXD .33FF +-5% 200VDC CLR .0+-30 | 28480
28480
28480
28480
51642 | 0160 4835
0160-0127
0180-0127
0180-1083
200-200-NP0-330J | | A3011
A3012
A3013
A3014
A3015 | 0180-1083
0180-1083
0160-0127
0160-4832
0180-0373 | 3
3
2
4 | 1 | CAPACITOR-EXD 33UF 25VDC AL CAPACITOR-EXD 33UF 25VDC AL CAPACITOR-EXD 33UF 25VDC CER CAPACITOR-EXD .01UF +-10% 100VDC CER CAPACITOR-EXD .68UF +-10% 35VDC TA | 28 480
28 480
28 480
28480
56282 | 0180-1083
0180-1083
0160-0127
0160-4832
1500684X9035A2 | | A3C16
A3C17
A3C18
A3C19
A3C20 | 0180-0291
0180-3153
0160-4835
0160-4835
0160-4835 | 3
7
7
7 | 1 | CAPACITOR-FXD 1UFF-10% 35UDC TA
CAPACITOR-FXD 10UF +-20% 25VDC TA
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF + 10% 50VDC CER
CAPACITOR FXD .1UF + 10% 50VDC CER | 57-289
28480
28480
28480 | 150D105X9035A2
017-0-4835
017-0-4835
017-0-4835 | | A3021
A3022
A3023
A3024 | 0160-4835
0160-4835
0180-1083
0180-1083 | 7
7
3
3 | | CAPACITOR-FXD .10F +-10% 50VDC CER
CAPACITOR-FXD .10F +-10% 50VDC CER
CAPACITOR FXD 33UF 25VDC AL
CAPACITOR-FXD 33UC 25VDC AL | 28480
28480
28480
28480 | 0160-4035
0160-4835
0180-1083
0180-1083 | | A3CR1 | 1901-0179 | 7 | 1 | DIODE-SWITCHING 15V 50MA 250PS DO-2 | 28480 | 1901-0179 | | A3J1
A3J2 | 1251-5862
1251-6527 | 6 2 | 1
1 | CONNECTOR 4-PIN M METRIC POST TYPE
CONNECTOR 6-PIN M METRIC POST TYPE | 28480
28480 | 1251 - 5862
1251-6527 | | A3L1
A3L2
A3L3
A3L4 | 9140-0114
9140-0114
9140-0114
9140-0114 | 4 4 4 | 4 | INDUCTOR RE-CH-MLD 10UH 10% .166DX.385LG
INDUCTOR RE-CH-MLD 10UH 10% .166DX.385LG
INDUCTOR RE-CH MLD 10UH 10% .166DX.3885LG
INDUCTOR RE-CH MLD 10UH 10% .166DX.3885LG | 28480
28480
28480
28480 | 9140:0114
9140-0114
9140-0114
9140-0114 | | A 301
A 302
A 303 | 1854-0129
1854-0477
1853-0281 | 6
7
9 | 1
1
1 | TRANSISTOR-NPN 2801636
TRANSISTOR NPN 2N2222A ST TO 18 PD=500MW
TRANSISTOR PNP 2N2707A ST TO-18 PD=400MW | 28480
04713
04713 | 1854-0129
PN222A
PN2907A | | A3R1
A3R2
A3R3
A3R4
A3R5 | 0698-3155
0698-7205
0683-4715
0698-7205
0698-3155 | 0 2 | 1 | RESISTOR 4.7K 15 .25W FC TC=-400/+600
RESISTOR 51 .25W FC TC=-400/+500
RESISTOR 470 5% .25W FC TC=-400/+600
RESISTOR 51 .25W FC TC=-400/+500
RESISTOR 4.7 .25W FC TC=-400/+600 | 01121
01121
01121
01121
01121 | CB4715 | | A3R6
A3R7
A3R8
A3R9
A3R10 | 2100-3109
0683-5105
0683-5105
2100-3352
0698-4158 | 4 4 7 6 | 1 2 | RESISTOR-TRMR 2K 10% C SIDE-ADJ 1-TRN
RESISTOR 51 5% .25W FC TC= 400/+500
RESISTOR 51 5% .25W FC TC=-400/+500
RESISTOR-TRMR 1K 10% C SIDE-ADJ 1-TRN
RESISTOR 100K .1% .125W F TC=0++50 | 28480
01121
01121
28430
28480 | 2100-3109
CR5105
CR5105
2100-3352
0A98-4158 | | A3R11
A3R12
A3R13
A3R14
A3R15 | 0698-4158
0683-1025
0698-3152
0757-0421
0757-0465 | 6
9
8
4
6 | 1
1
1 | RESISTOR 100K .1% .125W F TC=0+ 50
RESISTOR 1K 5% .25W FC TC=-400/+600
RESISTOR 3.48K 1% .125W F TC=0+-100
RESISTOR 825 1% .125W F TC=0+-100
RESISTOR 100K 1% .125W F TC=0+-100 | 28480
01121
24546
24546
24546 | 0.698-4158
CB3.025
C4-178 T0-3481-F
C4-178-T0-8258 F
C4-178-T0-1003 F | | A3R16
A3R17
A3R18
A3R19
A3R20 | 0757-0317
0698-3153
0683-4725
0683-4725
0683-2225 | 7
9
2
2
3 | 1
1
2 | RESISTOR 1.33K 1% .125W F TC=0+~100
RESISTOR 3.83K 1% .125W F TC=0+~100
RESISTOR 4.7K 5% .25W FC TC=~400/+200
RESISTOR 4.7K 5% .25W FC TC=~400/+200
RESISTOR 2.2K 5% .25W FC TC=~400/+200 | 24546
24546
01121
01121
01121 | C4 170-T0 1331 F
C4-178-T0-3831 F
C64725
C84725
GB2225 | | A3R21
A3R22
A3R23
A3R24
A3R25 | 0683-2225
0683-1055
0699-0277
0699-0277
0683-4725 | 3
5
8
4
2 | 1
2
1 | RESISTOR 2.2K 5% .25W FC TC=-400/+700
RESISTOR 1M 5% .25W FC TC=-800/4900
RESISTOR 10K .02% .1W F TC=0+-15
RESISTOR 10K .025% .1W F TC=0+-15
RESISTOR 4.7K 5% .25W FC TC=-400/+700 | 01121
01121
28480
28480
01121 | CB2025
CB1055
0699-0277
6499-0277
CD4725 | | A3R26
A3R27
A3R28
A3R29
A3R30 | 0.698-8474
0.699-0287
0.699-0287
0.698-3628
0.698-3628 | 7
6
6
3
3 | 1
3
2 | RESISTOR 800 .1% .1W F TC=0+-5
RESISTOR 100 .1% .1W F TC=0+-15
RESISTOR 100 .1% .1W F TC=0+-15
RESISTOR 220 5% 2W MO TC=0+-200
RESISTOR 220 5% 2W MO TC=0+-200 | 28480
28480
28480
28480
28480
28480 |
0.698-8424
0.699-0.207
0.699-0.207
0.698-3.628
0.698-3.628 | | A3R31
A3R32
A3R33
A3R34
A3R35 | 0699-0057
0698-2207
0699-0287
0698-3150
0698-0085 | 8
2
6
0 | 1
2
2 | RESISTOR 2K .1% .1W F TC=0+-5
RESISTOR:FXD 900 OHM 0.05% 1/8W MF
RESISTOR 100 .1% .1W F TC=0+-15
RESISTOR 2.37K 1% .125W F TC=0+-100
RESISTOR 2.37K 1% .125W F TC=0+-100 | 28480
20480
28480
24546
24546 | 0629-0057
0698-2207
0699-0287
C4-178-T0-2371-C
C4-178-T0-2611 F | | | | | | | | | Table 6-3. Replaceable Parts | | | | | ladie 6-3. Replaceable Parts | | | |--|--|-----------------------|-------------|--|--|---| | Reference
Designation | HP Part
Number | CD | Qty | Description | Mfr
Code | Mfr Part Number | | A3R36
A3R37
A3R38
A3R39
A3R40*
A3T1 | 0698-0085
0698-3150
1310-0205
0683-1825
0757-0464
04193-61501 | 0 6 7 7 0 | 1
1 | RESISTOR 2.61K 1% .125W F FC=0+-100
RESISTOR 2.37K 1% .125W F TC=0+-100
NETWORK-RES 8 SIP4.7K DHM X 7
RESISTOR 1.8K 5% .25W FC TC=-400/+700
90.9K 1%
BALUN | 24546
24546
01121
01121 | C4-1/8-T0-2611-F
C4-1/8-T0-2371-F
2084472
CR1825 | | A3U1
A3U2
A3U3
A3U4
A3U5 | 1826-0712
1826-0319
1820-1958
1820-1958
1820-1958 | 4
7
0
0
7 | 1
2
3 | IC OP AMP LOW-BIAS-H-IMPD DUAL 8-DIP-P IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG IC SWITCH ANLG GUAD 14-DIP-P PKG IC SWITCH ANLG GUAD 14-DIP-P PKG IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG | 28480
27014
04713
01928
01928
04713 | 04193-61501
LF353N
LF356G
CD4016BE
CD4016BE
LF356G | | A3U6
A3U7
A3U8 | 1820-1958
1826-0138
1820-1745 | 0
8
3 | 1 1 | IC SWITCH ANLG QUAD 14-DIP-P PKG
IC COMPARATOR GP QUAD 14-DIP-P PKG
IC GATE CMOS NOR QUAD 2-INP | 0192B
01295
04713 | CD4016BE
LM339N
MC14001BCP | | | 04193-60003 | 5 | 1 | COVER | 28480 | 04193-60003 | | | 04193-26503 | 0 | 1 | PCBD BLANK | 28480 | 04193-26503 | 1 | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |--|---|----------------------------|--------------------|--|--|---| | A4 | | | | | | | | A4C1
A4C2
A4C3
A4C4
A4C5 | 04193 :56504
0160-0570
0160-3877
0160-0570
0160-3877
0160-3878 | 3
2
5
2
5
6 | 2 | T CHANNEL AMPLIFIER BOARD ASSEMBLY CAPACITOR-FXD 220PF +-20% 100VDC CER CAPACITOR-FXD 100PF +-20% 100VDC CER CAPACITOR-FXD 220PF 4-20% 100VDC CER CAPACITOR-FXD 1000PF +-20% 100VDC CER CAPACITOR-FXD 1000PF +-20% 100VDC CER | 28480
28480
28480
28480
28480
28480 | 04193-66504
0160-0570
0160-3877
0160-0570
0160-3877
0160-3878 | | A406
A407
A408
A409
A4010 | 0160-4835
0160-0127
0160-0127
0160-4386
0160-4832 | 7 2 2 3 4 | 8
3
1 | CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD .33PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD .01UF +-10% 100VDC CER | 28480
28480
28480
51642
28480 | 0160-4835
0160-0127
0160-0127
200-200-NP0-330J
0160-4832 | | A4C11
A4C12
A4C13
A4C14
A4C15 | 0180-1083
0150-1083
0160-0127
0160-4835
0160-4835 | 3
3
2
7 | 5 | CAPACITOR-FXD 33UF 25VDC AL CAPACITOR-FXD 33UF 25VDC AL CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 1UF +-10% 50VDC CER CAPACITOR-FXD 1UF +-10% 50VDC CER | 26480
28480
28480
28480
28480 | 0180-1083
0180-1083
0160-0127
0160-4835
0160-4835 | | A4016
A4017
A4018
A4019
A4020 | 0180-0291
0180-0374
0180-0116
0160-2206
0180-1083 | 3
1
2
3 | 1
1
1 | CAPACITOR FXD 10F+ 10% 35VDC TA
CAPACITOR FXD 10HF+-10% 20VDC TA
CAPACITOR FXD 6.8UF+-10% 35VDC TA
CAPACITOR FXD 160PF +-5% 300VDC HICA
CAPACITOR FXD 33UF 25VDC AL | 56289
56289
56289
28480
28480 | 150D105X9035A2
150D106X9020B2
150D685X9035B2
0160-2206
0180-1083 | | A4021
A4022
A4023
A4024
A4025 | 0180-1083
0180-1083
0160-4835
0160-4835
0160-4835 | 3
7
7
7 | | CAPACITOR-FXD 33UF 25VDC AL CAPACITOR FXD 33UF 25VDC AL CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER | 20480
28480
28480
28480
28480 | 0180-1083
0180-1083
0160-4835
0160-4835
0160-4835 | | A4026
A4027 | 0160-4835
0160-4835 | 7 7 | | CAPACITOR FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER | 28480
28480 | 0160-4835
0160-4835 | | A4CR1 | 1901-0179 | 7 | 1 | DIODE-SWITCHING 15V 50MA 750PS DO-7 | 28480 | 1901-0179 | | A4J1
A4J2 | 1251-5862
1251-5862 | 6
6 | г | CONNECTOR 4-PIN M METRIC POST TYPE
CONNECTOR 4-PIN M METRIC POST TYPE | 28480
28480 | 1251-5862
1251 - 5862 | | A 4L1
A 4L2
A 4L3
A 4L4 | 9140-0114
9140-0114
9140-0114
9140-0114 | 4 4 4 4 | 4 | INDUCTOR RE-CH-MLD 10UH 10% .166DX.385LG | 28480
28480
28480
28480 | 9140-0114
9140-0114
9140-0114
9140-0114 | | A 401 | 1854-0129 | 6 | 1 | TRANSISTOR-NPN 2801636 | 28480 | 1954-0129 | | A4R1
A4R2
A4R3
A4R4
A4R5 | 0698-3155
0698-7205
0683-4715
0698-7205
0698-3155 | 2
4
0
4
2 | 5
4
1 | RESISTOR 4.7K 1% .25W FC TC=-400/+600
RESISTOR 51 .25W FC TC=-400/+500
RESISTOR 470 5% .25W FC TC=-400/+600
RESISTOR 51 .25W FC TC=-400/+600
RESISTOR 4.7K .25W FC TC=-400/+600 | 01121
01121
01121
01121
01121 | CB4715 | | A4R6
A4R7
A4R8
A4R9
A4R10 | 2100-3103
0683-5105
0683-1025
0683-5105
2100-3352 | 4 9 4 7 | 1
1
1 | RESISTOR-TRMR 10K 10% C SIDE-ADJ 1-TRN
RESISTOR 51 5% .25W FC TC=-400/+500
RESISTOR 1K 5% .25W FC TC=-400/+600
RESISTOR 51 5% .25W FC TC=-400/+500
RESISTOR-TRMR 1K 10% C SIDE-ADJ 1-TRN | 28480
01121
01121
01121
28480 | 2100-3103
CR5105
CR1025
CB5105
2100-3352 | | A4R11
A4R12
A4R13
A4R14
A4R15 | 0678-4158
0698-4158
0683-4725
0683-4725
0683-2225 | 6 2 2 3 | 2
3
2 | RESISTOR 100K .1% .125W F TC=0+-50
RESISTOR 100K .1% .125W F TC=0+-50
RESISTOR 4.7K 5% .25W FC TC=-400/+700
RESISTOR 4.7K 5% .25W FC TC=-400/+700
RESISTOR 2.2K 5% .25W FC TC=-400/+700 | 28480
28480
01121
01121
01121 | 0698-4158
0698-4158
CR4725
CR4725
CB2225 | | A4R16
A4R17
A4R18
A4R19
A4R20 | 0683-2225
0683-1055
0698-3152
0757-0421
0757-0465 | 3
5
8
4
6 | 1
1
1 | RESISTOR 2.2K 5% .25W FC TC=-400/+700
RESISTOR 1M 5% .25W FC TC=-800/+900
RESISTOR 3.48K TX .125W F TC=0+-100
RESISTOR 825 1% .125W F TC=0+-100
RESISTOR 100K 1% .125W F TC=0+-100 | 01121
01121
24546
24546
24546 | CB2225
CB1055
C4-1/8-T0-3481-F
C4-1/8-T0-825R-F
C4-1/8-T0-1003-F | | A4R21
A4R22
A4R23
A4R24
A4R25 | 0757-0317
0698-3153
0698-8474
0699-0287
0699-0287 | 7
9
7
6
6 | 1
1
1
2 | RESISTOR 1.33K 1% .125W F TC=0+-100
RESISTOR 3.83K 1% .125W F TC=0+-100
RESISTOR 800 .1% .1W F TC=0+-5
RESISTOR 100 .1% .1W F TC=0+-15
RESISTOR 100 .1% .1W F TC=0+-15 | 24546
24546
28480
28480
28480 | C4 1/8 - T0 - 1331 - F
C4 - 1/8 - T0 - 3831 - F
0698 - 8474
0699 - 0287
0699 - 0287 | | A4R26
A4R27*
A4R28
A4R29
A4R30 | 0698-2199
0757-0482
0698-6414
0683-4725
2100-3252 | 1
7
1
2
6 | 1
2
1 | R:FXD MET FLM 40K 0HM 0.1% 1/8W
RESISTOR 511K 1% .125W F TC=0+-100
RESISTOR 1K .1% :1W F TC=0+-5
RESISTOR 4.7K 5% .25W FC TC=-400/+700
RESISTOR-TRMR 5K 10% C TOP-ADJ 1-TRN | 28480
28480
28480
01121
28480 | 0698-2199
0757-0482
0698-6414
CB4725
2100-3252 | | A4R31
A4R32
A4R33
A4R34
A4R35 | 0757-0442
0757-0442
0757-0442
0757-0482
0757-0442 | 9
9
9
7
9 | 4 | RESISTOR 10K 1% .125W F TC=0+-100
RESISTOR 10K 1% .125W F TC=0+-100
RESISTOR 10K 1% .125W F TC=0+-100
RESISTOR 511K 1% .125W F TC=0+-100
RESISTOR 10K 1% .125W F TC=0+-100 | 24546
24546
24546
28480
24546 | C4-1/8-T0-1002-F
C4-1/8-T0-1002-F
C4-1/8-T0-1002-F
0757-0482
C4-1/8-T0-1002-F | | | | | | | | | Table 6-3. Replaceable Parts | | Poforonce UD Down | | | | | | | | | |--------------------------|-------------------------------------|-------------|-------------|---|------------------|----------------------------|--|--|--| | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | | | | | A4R36
A4R37
A4R38 | 0757-0401
1810-0205
0683-1825 | 0
7
7 | 1 1 | RESISTOR 100 1% .125W F IC=0+-100
NETWORK-RES
8-SIP4.7K OHM X 7
RESISTOR 1.9K 5% .25W FC IC=-400/±700 | 2 4546
01121 | C4-1/8-T0-101-F
2084472 | | | | | A4T1 | 04193~61501 | 0 | 1 | BALUN | 01121
28480 | 0B1825
04193~61501 | | | | | A4U1
A4U2 | 1826-0271
1826-0081 | 0 | t
1 | IC OP AMP GP B-DIPP PKG
IC OP AMP WR TO99 PKG | 01295
27014 | SN22741P
LM318H | | | | | A 4U3
A 4U4
A 4U5 | 1826-0712
1820-1958
1826-0319 | 4
0
7 | 1
1
1 | IC OP AMP LOW BLAS-H-IMPD DUAL B-DIP-P
IC SWITCH ANLG QUAD 14-DTP-P PKG
IC OP AMP LOW-BIAS H-IMPD TO-99 PKG | 27014
01928 | LF353N
CD4016BE | | | | | A4U6 | 1826-0138 | 8 | 1 | IC COMPARATOR GP QUAD 14-DIP-P PKC | 0.4713
0.1295 | 1 F 356G
1 M 339N | | | | | | 5001-0176
04193-60004 | 7 6 | l
1 | STRAP-GROUND
COVER | 28480
28480 | 5001-0173
04193-60004 | | | | | | 04193-26504 | 0 | 1 | PCBD BLANK | 28480 | 04193-26504 | 1 | ļ | ١ | | | | | | | | | | | - | • |] | | | | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |--|--|---|------------------|--|--|--| | A5 | | | | | | | | A5 | 04193-66505 | 4 | 1 | MIXER & DIVIDER BOARD ASSEMBLY | 23480 | 04193-66505 | | ASC1
ASC2
ASC3
ASC4
ASC5 | 0160-2437
0160-2437
0180-0228
0160-4835
0160-4835 | 1
1
6
7
7 | 3
9 | CAPACITOR-FDTHRU 5000PF +80 -20% 200V
CAPACITOR-FDTHRU 5000PF +80 -20% 200V
CAPACITOR-FXD 22UF+-10% 15VDC TA
CAPACITOR-FXD .1UF +-10% 50VDC CFR
CAPACITOR-FXD .1UF +-10% 50VDC CFR | 28480
28480
56289
28480
28480 | 0160-2437
0160-2437
150D226X901582
0160-4835
0160-4835 | | A5C6
A5C7
A5CB
A5C9
A5C1 0 | 0160-4835
0160-4386
0160-4801
0180-0228
0160-4835 | 7
3
7
6
7 | 4 | CAPACITUR-FXD .1UF +-10% 50VDC CFR CAPACITUR-FXD 33PF +-5% 200VDC CFR 0+-30 CAPACITUR-FXD 100PF +-5% 100VDC CFR CAPACITUR-FXD 22UF+-10% 15VDC TA CAPACITUR-FXD .1UF +-10% 50VDC CFR | 28480
51642
28480
56289
28480 | 0160-4835
200-200-NP0-330J
0160-4801
150D226X901582
0160-4835 | | ASC11
ASC12
ASC13
ASC13
ASC14
ASC15
ASC16
ASC17
ASC18
ASC19
ASC20
ASC20 | 0160-4386
0160-4386
0160-4385
0160-4835
0160-4832
0160-4835
0160-4835
0180-0228
0180-0374
0160-4835 | 3
3
3
7
4
4
7
6
3
7
4 | 4 | CAPACITOR-FXD 33PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD 33PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD 33PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD .01UF +-10% 50VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .01UF +-10% 50VDC CER CAPACITOR-FXD .01UF +-10% 15VDC TA CAPACITOR-FXD 20UF+-10% 15VDC TA CAPACITOR-FXD 100F+-10% 20VDC TA CAPACITOR-FXD .01UF +-10% 50VDC CER CAPACITOR-FXD .01UF +-10% 50VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER | 51642
51642
51642
28480
28480
28480
28480
56289
28480
28480 | 200-200-NP0-330J
200-200-NP0-330J
200-200-NP0-330J
0160-4835
0160-4832
0160-4835
150D226X9015B2
150D106X9020B2
0160-4835 | | A5022
A5023
A5024
A5025
A5026 | 0160-4832
0160-4574
0160-4574
0160-4574
0160-4835 | 4
1
1
7 | 8 | CAPACITOR-FXD .01UF +-10% 100VDC CER
CAPACITOR-FXD 1000PF +-10% 100VDC CER
CAPACITOR-FXD 1000PF +-10% 100VDC CER
CAPACITOR-FXD 1000PF +-10% 100VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER | 28480
28480
28480
28480
28480 | 9160~4832
0160~4574
0160~4574
0160~4574
0160~4573 | | A5027
A5028
A5029
A5030
A5031 | 0160-4574
0160-4574
0180-1083
0160-4835
0160-4574 | 1
1
3
7 | 1 | CAPACITOR FXD 1000PF + 10% 100VDC CER
CAPACITOR FXD 1000PF +-10% 100VDC CER
CAPACITOR FXD 33UF 25VDC AL
CAPACITOR FXD .1UF +-10% 50VDC CER
CAPACITOR FXD 1000PF +-10% 100VDC CER | 28480
28480
28480
28480
28480 | 0160-4574
0168-4574
0180-1083
0160-4835
0160-4574 | | A5032
A5033 | 0160-4574
0160-4574 | 1 1 | | CAPACITOR-FXD 1000PF +-10% 100VDC CFR
CAPACITOR-FXD 1000PF +-10% 100VDC CFR | 28488
28 48 0 | 0160-4574
0160-4574 | | ASCR1 | 1901-0040 | 1 | 1 | DIODE-SWITCHING 30V 50MA 2NS DO-35 | 28480 | 1901-0040 | | A5E1 | 1906-0235 | 6 | 1 | DIODE-DOUBLE BALANCED MIXER | 28480 | 1906-0235 | | A5L1
A5L2
A5L3
A5L4
A5L5 | 9100-2817
9100-2251
9100-2249
9100-2817
9100-2249 | 4
0
6
4
6 | 2
1
2 | INDUCTOR RF-CH MLD 100NH 5% .105DX.26LG INDUCTOR RF-CH MLD 220NH 10% .105DX.26LG INDUCTOR RF-CH MLD 150NH 10% .105DX.26LG INDUCTOR RF-CH-MLD 100NH 5% .105DX.26LG INDUCTOR RF-CH-MLD 150NH 10% .105DX.26LG | 28480
28480
28480
28480
28480
28480 | 9100-2817
9100-2251
9100-2249
9100-2817
9100-2249 | | A501
A502
A503 | 1854-0247
1854-0345
1854-0345 | 9 8 | 1 2 | TRANSISTOR NPN ST TO-39 PD=1W FT=800MH7
TRANSISTOR NPN 2N5179 ST TO-72 PD=200MW
TRANSISTOR NPN 2N5179 ST TO-72 PD=200MW | 28480
04713
04713 | 1854~0247
2N5179
2N5179 | | A5R1
A5R2
A5R3
A5R4
A5R5 | 0683-4715
0683-4715
0683-4715
0683-1005
0757-0279 | 0
0
0
5 | 3
1
8 | RESISTOR 470 5% .25W FC TC=-4007+600
RESISTOR 470 5% .25W FC TC=-4007+600
RESISTOR 470 5% .25W FC TC=-4007+600
RESISTOR 10 5% .25W FC TC=-4007+500
RESISTOR 3.16K 1% .125W F TC=0+-100 | 01121
01121
01121
01121
24546 | CB4715
CB4715
CB4715
CB1005
C4-1/8-T0-3161-F | | ASR6
ASR7
ASR8
ASR9
ASR10 | 0698-0084
0757-0279
0698-0084
0757-0279
0698-0084 | 9
0
9
0
9 | ខ | RESISTOR 2.15K 1% ,125W F TC=0+-100
RESISTOR 3.16K 1% ,125W F TC=0+-100
RESISTOR 2.15K 1% ,125W F TC=0+-100
RESISTOR 3.16K 1% ,125W F TC=0+-100
RESISTOR 3.15K 1% ,125W F TC=0+-100 | 24546
24546
24546
24546
24546
24546 | C4-1/8-T0-2151-F
C4-1/8-T0-3161-F
C4-1/8-T0-2151-F
C4-1/8-T0-3161-F
C4-1/8-T0-2151-F | | A5R11
A5R12
A5R13
A5R14
A5R15 | 0698-3441
0757-0394
0698-3440
0757-0401
0683-2705 | 8
0
7
0
4 | 1
1
1
1 | RESISTOR 215 1% .125W F TC=0+-100
RESISTOR 51.1 1% .125W F TC=0+-100
RESISTOR 196 1% .125W F TC=0+-100
RESISTOR 100 1% .125W F TC=0+-100
RESISTOR 27 5% .25W FC TC=-400/+500 | 24546
24546
24546
24546
01121 | C4 1/8-T0-215R-F
C4 1/8-T0-51P1-F
C4 1/8-T0-196R-F
C4 1/8-T0-101 F
CB2705 | | ASR16
ASR17
ASR18
ASR19
ASR20 | 0683-6805
0678-0085
0683-1815
0698-0082
0683-1815 | 3
0
5
7
5 | 1
1
2
1 | RESISTOR 68 5% .25W FC TC=-400/+500
RESISTOR 2.61K 1% .125W F TC=0+-100
RESISTOR 180 5% .25W FC TC=-400/+600
RESISTOR 464 1% .125W F TC=0+-100
RESISTOR 180 5% .25W FC TC=-400/+600 | 01121
24546
01121
24546
01121 | CBAR05
C4-1/8-T0-2611-F
CR1815
C4-1/8-T0-4640-F
CR1815 | | A5R21
A5R22
A5R23
A5R24
A5R25 | 0698-0084
0757-0279
0683-4725
0698-0084
0757-0279 | 9
0
2
9
0 | 1 | RESTSTOR 2.15K 1% .125W F TC=0+-100
RESTSTOR 3.16K 1% .125W F TC=0+-100
RESTSTOR 4.7K 5% .25W FC TC=-400/+200
RESTSTOR 2.15K 1% .125W F TC=0+-100
RESTSTOR 3.16K 1% .125W F TC=0+-100 | 24546
24546
01121
24546
24546 | C4-1/8-T0-2151-F
C4-1/8-T0-3161-F
CB4725
C4-1/8-T0-2151-F
C4-1/8-T0-3161-F | | | | | | | | | Table 6-3. Replaceable Parts | Table 0-3. Replaceable Parts | | | | | | | | | |---|---|-----------------------|------------------|--|---|--|--|--| | Reference
Designation | HP Part
Number | CD | Qty | Description | Mfr
Code | Mfr Part Number | | | | A5R26
A5R27
A5R28
A5R29
A5R30 | 0683-5615
0683-5615
0683-5615
0683-5615
0683-5615 | 1
1
1
1 | 17 | RESISTOR 560 5% .25W FC TC=-400/+600
RESISTOR 560 5% .25W FC TC=-400/+600 | 01121
01121
01121
01121
01121 |
CB5615
CB5615
CB5615
CB5615
CB5615
CR5615 | | | | A5R31
A5R32
A5R33
A5R34
A5R35 | 0683-5615
0683-5615
0683-5615
0683-5615
0698-0084 | 1
1
1
1
9 | | RESISTUR 560 5% .25W FC TC=-400/+600
RESISTOR 2.15K 1% .125W F TC=0+-100 | 01121
01121
01121
01121
24546 | CB5615
CB5615
CB5615
CB5615
C4-1/8-T0-2151-F | | | | A5R36
A5R37
A5R38
A5R39
A5R40 | 0757-0279
0698-0084
0757-0279
0698-0084
0757-0279 | 0
9
0
9 | | RESISTOR 3.16K 1% .125W F TC=0+-100
RESISTOR 2.15K 1% .125W F TC=0+-100
RESISTOR 3.16K 1% .125W F TC=0+-100
RESISTOR 2.15K 1% .125W F TC=0+-100
RESISTOR 3.16K 1% .125W F TC=0+-100 | 24546
24546
24546
24546
24546 | C4-1/8-T0-3161-F
C4-1/8-T0-2151-F
C4-1/8-T0-3161-F
C4-1/8-T0-2151-F
C4-1/8-T0-3161-F | | | | A5R41
A5R42
A5R43
A5R44
A5R45 | 0683-2215
0683-3315
0683-5615
0683-5615
0683-5615 | 1
4
1
1 | 1 | RESISTOR 220 5% .25W FC TC=-400/+600
RESISTOR 330 5% .25W FC TC=-400/+600
RESISTOR 560 5% .25W FC TC=-400/+600
RESISTOR 560 5% .25W FC TC=-400/+600
RESISTOR 560 5% .25W FC TC=-400/+600 | 01121
01121
01121
01121
01121 | CR2215
CB3315
CB5615
CB5615
CB5615 | | | | ASR46
A5R47
ASR48
A5R49
ASR50 | 0683-5615
0683-5615
0683-5615
0683-5615
0683-5615 | 1
1
1
1 | | RESISTOR 560 5% .25W FC TC=-400/+600 | 01121
01121
01121
01121
01121 | CB5615
CB5615
CR5615
CB5615
CR5615 | | | | A5U1
A5U2
A5U3
A5U4
A5U5 | 1820-1200
1820-0817
1820-1198
1820-1224
1820-0817 | 5
8
0
3
8 | 1
2
1
1 | IC INV TTL LS HEX IC FF ECL D-M/S DUAL IC GATE TTL LS NAND QUAD 2-TNP IC RCVR ECL LINE RCVR TPL 2-INP IC FF ECL D-M/S DUAL | 01295
04713
01295
04713
04713 | SN74LS05N
MC10131P
SN74LS03N
MC10216P
MC10131P | | | | A5U6
A5U7 | 1820-0804
1820-0821 | 3 4 | 1
1 | JC GATE EĆL NOR TPL
IC CNIR ECL BIN UP∕DOWN SYNCHRO | 04713
04713 | MC10106P
MC10136L | | | | | 1205-0011
5001-0173
04193-60005 | 0
7
7 | 1
2
1 | HEAT SINK TO-5/TO-39-CS
STRAP-GROUND
COVER | 28480
28480
28480 | 1205-0011
5001-0173
04193-60005 | | | | | 04193-26505 | 0 | 1 | PCBD BLANK | 28480 | 04193-26505 | , | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |---|--|-----------------------|-------------|---|--|--| | A6 | 04193-66506 | 5 | 1 | VCXD BOARD ASSEMBLY | 28480 | 04193-66506 | | A6C1
A6C2
A6C3
A6C4
A6C5 | 0160-2437
0160-2437
0160-2437
0160-5495
0160-5620 | 1 1 3 2 | 3
5
3 | CAPACITOR-FDTHRU 5000PF +80 -20% 200V
CAPACITOR-FDTHRU 5000PF +80 -20% 200V
CAPACITOR-FDTHRU 5000PF +80 -20% 200V
CAPACITOR-FXD 3.9PF +5PF 200VDC CER
CAPACITOR-FXD 15PF +-5% 200VDC CER 0+-30 | 28480
28480
28480
51642 | 0160-2437
0160-2437
0160-2437
200-200-NPG-150J | | A6C6
A6C7
A6C8
A6C9
A6C10 | 0160-5495
0121-0453
0121-0453
0121-0453
0160-5617
0160-4103 | | 2 | CAPACITOR-FXD 3.9PF +5PF 200VDC CER
CAPACITOR-V TRMR-AIR 1.3-5.4PF 175V
CAPACITOR-V TRMR-AIR 1.3-5.4PF 175V
CAPACITOR-FXD 3PF +5PF 200VDC CER
CAPACITOR-FXD 220PF +-5% 100VDC CER | 74970
74970
72982 | 187-0303-125
187-0303-125
8121-8100-006-221J | | A6011
A6012
A6013
A6014
A6015 | 0160-4103
0160-4822
0160-4832
0160-4832
0160-3872 | 22440 | 2
8
1 | CAPACITOR-FXD 220PF +-5% 100VDC CER
CAPACITOR-FXD 1000PF >-5% 100VDC CER
CAPACITOR-FXD .01UF +-10% 100VDC CER
CAPACITOR-FXD .01UF +-10% 100VDC CER
CAPACITOR-FXD 2.2PF +25PF 200VDC CER | 7/2982
28480
28480
28480
28480 | 8121-M106-COG-221J
0160-4822
0160-4832
0160-4832
0160-3372 | | A6016
A6017
A6018
A6019
A6020
A6021
A6022
A6023
A6024
A6025
A6026 | 0160-3879
0160-3879
0160-3879
0160-3879
0160-3879
0160-3879
0160-4835
0160-4832
0160-4832
0160-4832 | 777774472 | F3 | CAPACITOR -FXD .010F +-20% 100VDC CFR CAPACITOR-FXD .010F +-20% 100VDC CER CAPACITOR-FXD .010F +-10% 100VDC CER CAPACITOR-FXD .10F +-10% 50VDC CER .04PACITOR-FXD .10F +-10% 50VDC CER .04PACITOR-FXD .10F +-10% 50VDC CER .04-30 | 28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
51480 | 0160-3679
0160-3679
0160-3679
0160-3679
0160-3679
0160-4835
0160-4832
0160-4832
0160-4832
0160-4835 | | A6C27
A6C28
A6C29
A6C30
A6C31 | 0160-5621
0160-3879
0160-3879
0160-4822
0160-4832 | 3
7
7
2
4 | 1 | CAPACITOR FXD 22PF +-5% 200VDC CER 0 F-30 CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD 1000PF +-5% 100VDC CER CAPACITOR-FXD .01UF + 10% 100VDC CER | 28480
28480
28480
28480
28480 | 0160-3675
0160-3879
0160-3879
0160-4822
0160-4832 | | A6032
A6033
A6034
A6035
A6036 | 0180-0374
0160-5620
0160-5495
0160-5495
0160-3879 | 3
2
3
3
7 | 1 | CAPACITOR-FXD 10UF+-10% 20UDC TA
CAPACITOR-FXD 15PF +-5% 20UUDC CER 0+-30
CAPACITOR-FXD 3.9PF +5PF 20UUDC CER
CAPACITOR-FXD 3.9PF +5PF 20UUDC CER
CAPACITOR-FXD .01UF +-26% 10UUDC CER | 56289
51642
51642
51642
28480 | 150D106X9020B2
200-200-NP0-150J
200-200-NP0-399D
200-200-NP0-399D
0160-3879 | | A6037
A6038
A6039
A6040
A6041 | 0160-3877
0160-4801
0160-4832
0160-4832
0160-4835 | 5
7
4
4
7 | 1 | CAPACTIOR-FXD 100PF +-20% 200VDC CER
CAPACITOR-FXD 100PF +-5% 100VDC CER
CAPACITOR-FXD .01UF +-10% 100VDC CER
CAPACITOR-FXD .01UF +-10% 100VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER | 28480
28480
28480
28480
28480
28480 | 0160-3627
0160-4801
0160-4832
0160-4832
0160-4635 | | A6C42
A6C43
A6C44
A6C45
A6C46 | 0160-0161
0160-2201
0180-1083
0160-4835
0160-4835 | 4
7
3
7
7 | 2
1
6 | CAPACITOR-FXD .01UF +-10% 200VDC P0LYE
CAPACITOR-FXD 51PF +-5% 300VDC MICA
CAPACITOR-FXD 33UF 25VDC AL
CAPACITOR-FXD .1UF +-10% 50VDC CFR
CAPACITOR-FXD .1UF +-10% 50VDC CFR | 28480
28480
28480
28480
28480 | 0160-0161
0150-2201
0180-1683
0160-4835
0160-4835 | | A6C47
A6C48
A6C49
A6C50
A6C51 | 0160-2204
0180-0197
0180-0197
0160-4835
0180-1083 | 0
8
8
7
3 | 1 2 | CAPACITOR-EXD 100PF +-5% 300VDC HICA
CAPACITOR-EXD 2.2UF+-10% 20VDC TA
CAPACITOR-EXD 2.2UF+-10% 20VDC TA
CAPACITOR-EXD .1UF +-10% 56VDC CER
CAPACITOR-EXD 33UF 25VDC AL | 28 480
56289
56 2 89
-284 30
28 48 0 | 0160-2204
150D225X9620A2
150D225X9020A2
6166 4835
0100-1003 | | A6052
A6053
A6054
A6055
A6056 | 0180-1083
0160-4835
0160-4835
0160-4835
0160-0362 | 3 7 7 7 7 7 | 1 | CAPACITOR-FXD 33UF 25VDC AL CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 5)0PF +-5% 300VDC MICA | 28480
28480
28480
28480
28480
23480 | 6180-1083
0160-4835
6160-4835
9160-4835
6166-0362 | | A6C57
A6C58
A6C59
A6C60
A6C61 | 0160-0161
0160-0127
0180-1083
0180-1083
0160-4835 | 4 23 3 7 | ક | CAPACITOR-FXD .01UF +-10% 200VDC POLYE
CAPACITOR-FXD 1UF +-20% 25VDC CER
CAPACITOR-FXD 33UF 25VDC AL
CAPACITOR-FXD 33UF 25VDC AL
CAPACITOR-FXD .1UF +-10% 50VDC CER | 28480
28480
28480
28490
28490 | 0160-0161
6160-0127
0180-1383
0180-1683
0160-4635 | | A6C62
A6C63 | 0180-1083
0160-0127 | 3 | | CAPACITOR-FXD 33UF 25VDC AL
CAPACITOR-FXD 1UF +-20% 25VDC CER | 28480
28480 | 0186-1083
0160-0127 | | A6E1
A6CR1
A6CR2
A6CR3
A6CR4 | 1906-0235
0122-0072
1901-0040
1901-0040
1901-0040 | 6
5
1
1
1 | 1
1
5 | DIODE-DOUBLE BALANCED MIXER DIODE-VVC 2.2PF 5% 03/025 MiN=4.5 DIODE-SWITCHING 30V 50MA 2NS D0-35 | 28486
0 4713
28480
28480
28480 | 1966-0235
8B105B
1961-0046
1901-0040
1901-0046 | | A6CR5
A6CR6
A6CR7
A6CR8
A6CR9 | 1901-0040
1901-0040
1902-0786
1902-3036
1902-3097 | 1
1
4
3
6 | 1
4
1 | DIODE-SWITCHING 30V 50MA 2NS DD-35
DIODE-SWITCHING 30V 50MA 2NS DO-35
DIODE-2NR 1N937 9V 5% DO-7 PD=.5W
DIODE-ZNR 3.16V 5% DO-7 PD=.4W TC=064%
DIODE-ZNR 5.23V 2% DO-35 PD=.4W | 28480
28480
24046
28480
28480 | 1901-0040
1901-0046
18937
1902-3636
1902-3097 | | | | | | | | | Table 6-3. Replaceable Parts | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part
Number | |---|--|--|--|--|--| | 1902-3149
1902-3036
1902-3036
1902-3036 | 9
3
3
3 | 1 | DIODE-ZNR 9.09V 5% DO-35 PD=.4W
DIODE-ZNR 3.16V 5% DO-7 PD=.4W TC=064%
DIODE-ZNR 3.16V 5% DO-7 PD=.4W TC=064%
DIODE-ZNR 3.16V 5% DO-7 PD=.4W TC=064% | 28480
28480
28480
28480 | 1902-3149
1902-3036
1902-3036
1902-3036 | | 1250-0257
1251-4822
1258-0141 | 1
6
8 | 1
1
1 | CONNECTOR-RF SMB M PC 50-0HM
CONNECTOR 3-PIN M POST TYPE
JUMPER-REM | 28480
28480
28480 | 1250-0257
1251-4822
1258-0141 | | 9100-2251
9100-2247
9100-2250
9100-2891
9100-2891 | 0
4
9
4 | 5
1
1
2 | INDUCTOR RE-CH-MED 220NH 10% ,105DX.26LG
INDUCTOR RE-CH-MED 100NH 10% ,105DX.26LG
INDUCTOR RE-CH-MED 180NH 10% ,105DX.26LG
INDUCTOR RE-CH-MED 50NH 10% ,105DX.26LG
INDUCTOR RE-CH-MED 50NH 10% ,105DX.26LG | 28480
28480
28480
28480
28480 | 9100-2251
9100-2247
9100-2250
9100-2891
9100-2891 | | 9140-0641
9140-0141
9100-0368
9100-2249
9100-2251 | B
7
6
6 | 1
1
1
3 | RF TRANSFORMER INDUCTOR RF-CH-MLD 680NH 10% .105DX.26LG INDUCTOR RF-CH-MLD 330NH 10% .105DX.26LG INDUCTOR RF-CH-MLD 150NH 10% .105DX.26LG INDUCTOR RF-CH-MLD 220NH 10% .105DX.26LG | 28480
28480
28480
28480
28480
28480 | 9140-0641
9140-0141
9100-0358
9100-2249
9100-2251 | | 9100-2251
9100-2249
9100-2248
9100-2251
9100-2251 | 0
6
5
0 | ય | INDUCTOR RF-CH-MLD 220NH 10% .105DX.26LG INDUCTOR RF-CH-MLD 150NH 10% .105DX.26LG INDUCTOR RF-CH-MLD 120NH 10% .105DX.26LG INDUCTOR RF-CH MLD 220NH 10% .105DX.26LG INDUCTOR RF-CH-MLD 220NH 10% .105DX.26LG | 28480
28480
28480
28480
28480
28480 | 9100-2251
9100-2249
9100-2248
9100-2251
9100-2251 | | 9100-2248
9100-2249 | 5
6 | | INDUCTOR RE-CH-MLD 120NH 10% .105DX.26LG INDUCTOR RE-CH-MLD 150NH 10% .105DX.26LG | 28480
28480 | 9100-2248
9100-2249 | | 1854-0345
1854-0345
1854-0345
1854-0345
1854-0345 | 8 8 8 8 | 7 | TRANSISTOR NPN 2N5179 ST TO-72 PD=200MW | 04713
04713
04713
04713
04713 | 2N5179
2N5179
2N5179
2N5179
2N5179 | | 1854-0345
1854-0345 | 8 | | TRANSISTOR NPN 2N5179 SJ TO-72 PD=200MW
TRANSISTOR NPN 2N5179 SJ TO-72 PD=200MW | 04713
04713 | 2N5179
2N5179 | | 0683-1015
0683-6815
0683-2225
0757-0439
0698-3155 | 7
5
3
4
1 | 1
1
5
3
2 | RESISTOR 100 5% .25W FC TC=-400/+500
RESISTOR 680 5% .25W FC TC=-400/+600
RESISTOR 2.2K 5% .25W FC TC=-400/+700
RESISTOR 6.81K 1% .125W F TC=0+-100
RESISTOR 4.64K 1% .125W F TC=0+-100 | 01121
01121
01121
24546
24546 | CR1015
CB6815
CB2225
C4-1/8-T0-6811-F
C4-1/8-T0-4641-F | | 0698-3132
0698-3155
0757-0439
0757-0421
0698-3444 | 4
1
4
4
1 | 1
1
1 | RESISTOR 261 1Z .125W F TC=0+-100
RESISTOR 4.64K 1Z .125W F TC=0+-100
RESISTOR 6.81K 1Z .125W F TC=0+-100
RESISTOR 825 1Z .125W F TC=0+-100
RESISTOR 316 1Z .125W F TC=0+-100 | 24546
24546
24546
24546
24546 | C4-1/8-T0-2610-F
C4-1/8-T0-4641-F
C4-1/8-T0-6811-F
C4-1/8-T0-825R-F
C4-1/8-T0-316R-F | | 0757-0274
0757-0439
0683-6805
0757-0419
0757-0428 | 5
4
3
0
1 | 2
3
1
1 | RESISTOR 1.21K 1% .125W F TC=0+-100
RESISTOR 6.81K 1% .125W F TC=0+-100
RESISTOR 68 5% .25W FC TC=-400/+500
RESISTOR 681 1% .125W F TC=0+-100
RESISTOR 1.62K 1% .125W F TC=0+-100 | 24546
24546
01121
24546
24546 | C4-1/8-T0-1211-F
C4-1/8-T0-6811-F
CB4805
C4-1/8-T0-681R-F
C4-1/8-T0-1621-F | | 0757-0290
0683-6805
0683-4715
0698-3441
0757-1094 | 5
3
0
8
9 | 1
2
2
1 | RESISTOR 6.19K 1% .125W F TC=0+-100
RESISTOR 60 5% .25W FC TC=-400/+500
RESISTOR 470 5% .25W FC TC=-400/+600
RESISTOR 215 1% .125W F TC=0+-100
RESISTOR 1.47K 1% .125W F TC=0+-100 | 19701
01121
01121
24546
24546 | MF4C1/8-T0-6191-F
CB4805
CB4715
C4-1/8-T0-215R-F
C4-1/8-T0-1471-F | | 0757-0200
0683-2205
0698-3441
0757-0417
0683-1045 | 7
9
8
3 | 2
1
1
2 | RESISTOR 5.62K 1% .125W F TC=0+-100
RESISTUR 22 5% .25W FC TC=-400/+500
RESISTOR 215 1% .125W F TC=0+-100
RESISTOR 562 1% .125W F TC=0+-100
RESISTOR 100K 5% .25W FC TC=-400/+800 | 24546
01121
24546
24546
01121 | C4-1/8-T0-5621-F
C52205
C4-1/8-T0-215R-F
C4-1/9-T0-562R-F
CB1045 | | 0757-0279
0683-5605
0683-6805
0683-4705
0683-3305 | 0
9
3
8
2 | 1
1
1
5 | RESISTOR 3.16K 1% .125W F TC=0+-100
RESISTOR 56 5% .25W FC TC=-400/+500
RESISTOR 69 5% .25W FC TC=-400/+500
RESISTOR 47 5% .25W FC TC=-400/+500
RESISTOR 33 5% .25W FC TC=-400/+500 | 24546
01121
01121
01121
01121 | C4-1/8-T0-3161-F
CB5605
CB6805
CB4705
CB3305 | | 0683-3305
0683-4715
0683-2215
0757-0442
0698-3157 | 2
0
1
9
3 | 1
2
1 | RESISTOR 33 5% .25W FC TC=-400/+500
RESISTOR 470 5% .25W FC TC=-400/+600
RESISTOR 220 5% .25W FC TC=-400/+600
RESISTOR 10K 1% .125W F TC=0+-100
RESISTOR 19.6K 1% .125W F TC=0+-100 | 01121
01121
01121
24546
24546 | C83305
CB4715
CB2215
C4-1/8-T0-1002-F
C4-1/8-T0-1962-F | | 0693-3305
0683-2225
0683-1045
0683-4725
0683-1825 | 23327 | 1
2 | RESISTOR 33 5% .25W FC TC=-400/+500
RESISTOR 2.2K 5% .25W FC TC=-400/+700
RESISTOR 100K 5% .25W FC
TC=-400/+800
RESISTOR 4.7K 5% .25W FC TC=-400/+700
RESISTOR 1.8K 5% .25W FC TC=-400/+700 | 01121
01121
01121
01121
01121 | CB3305
CB2225
CB1045
CB4725
CB1625 | | 0683-1825
0683-1225
0683-2225
0683-1235
0683-6825 | 7
1
3
3
7 | 1
1
1 | RESISTOR 1.8K 5% .25W FC TC=-400/+700 RESISTOR 1.2K 5% .25W FC TC=-400/+700 RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 12K 5% .25W FC TC=-400/+800 RESISTOR 6.8K 5% .25W FC TC=-400/+700 | 01121
01121
01121
01121
01121 | CB1825
CB1225
CB2225
CB1235
CB6925 | | | 1902-3036 1902-3036 1902-3036 1902-3036 1902-3036 1250-0257 1251-4822 1258-0141 9100-2245 9100-2249 9100-2249 9100-2249 9100-2249 9100-2249 9100-2249 9100-2249 9100-2249 9100-2249 9100-2249 9100-2249 9100-2251 9100-3 | 1902-3036 1902-3036 1902-3036 1902-3036 1250-0257 1251-4822 1258-0141 8 9100-2251 9100-2251 9100-2251 9100-22891 4 9140-0641 8 9140-0641 8 9140-0368 6 9100-2249 9100-2251 9100-2251 9100-2251 9100-2251 9100-2251 9100-2251 9100-2251 9100-2251 9100-2251 9100-2251 9100-2251 9100-2251 9100-2251 9100-2251 9100-2251 9100-2248 59100-2251 9100-2251 9100-2251 9100-2251 9100-2251 9100-2251 9100-2251 100-225 | 1902—3036 | 1902-3036 3 | 1992-3036 3 | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |--|--|-----------------------|-----------------------|---|--|--| | A68 46
A68 47
A68 48
A68 47
A68 50 | 0757-0200
0757-0440
0757-0274
0683-2225
0683-3305 | 77532 | 1 | RESISIOR 5.62K 1% .125W F TC=0+-100
RESISIOR 7.5K 1% .125W F TC=0+-100
RESISIOR 1.21K 1% .125W F TC=0+-100
RESISIOR 2.2K 5% .25W FC TC=-400/+700
RESISIOR 33 5% .25W FC TC=-400/+500 | 24546
24546
24546
01121
01121 | C4-1/8-T0-5621-F
C4-1/8-T0-7501-F
C4-1/8-T0-1211-F
CB2225
CB3305 | | ACR51
ACR52
ACR53
ACR54
ACR55 | 0683-3305
0757-6442
0698-3153
0683-2225
0683-1525 | 29934 | 1 | RESTSION 33 5% .25W FC IC= 4007+500
RESISTON 16K 1% .125W F IC=0+-100
RESISTON 3.93K 1% .125W F IC=0+-100
RESISTON 2.2K 5% .25W FC IC= 4007+700
RESISTON 1.5K 5% .25W FC IC= 4007+700 | 01121
24546
24546
01121
01121 | CB3305
C4-1/B-T0-1002-F
C4-1/B-T0-3831-F
CB2225
CB1525 | | A6U1
A6U2
A6U3
A6U4
A6U5
A6Y1 | 1826-0139
1826-0965
1820-1443
1820-0630
1826-0319
0410-1379 | 9
0
3
7
9 | 1
1
1
1 | IC OP AMP CP DUAL B-DLP-P PKG TC COMPARATOR PREN B-DLP P PKG TC COMPARATOR PREN B-DLP P PKG TC COMPARATOR PREN BINARY ASYNCHRO TC MISC TIL TC OP AMP LOW BIAS-H-TMPD TO-99 PKG CRYSIAL-QUARITZ 99.99M | 01928
01295
01295
04713
04713
28480 | CA1458G
SN72311P
SN57204
MC4044P
LF35/G
0410-1379 | | | 1400-0249
5001-0176
9170-0029
04193-00604
04193-00607 | 0
7
3
6
9 | t
2
3
3
3 | CARLE TIE .362625-DIA .321-WD NYL
STRAP-CROUND
CREE-SHIELDING READ
SHIELD HOX
SHIELD HOX | 06383
28480
#8480
28480
28480 | PLT1M-8
5001-0173
9170-0029
04193-00604
04193-00607 | | | 64193-60006
04193-26506 | 8 | 1 | COMER PCBD BLANK | 28490
28480 | 04193-60006
04193-26506 | | | | | | | | | | | | | : | | | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |---|---|-----------------------|-----------------------|---|--|--| | Α7 | | | | | | | | A7 | 04193~66507 | | 1 | DIVIDER BOARD ASSEMBLY | 28480 | 04193-66507 | | A701
A702
A703
A704
A705 | 0160-2437
0160-4832
0160-4835
0160-4835
0160-4832 | 1
4
7
7
4 | 1
5
3 | CAPACITOR-FDTHRU 5000PF +80 -20% 200V CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER | 28480
28480
28480
28480
28480 | 0160-2437
0160-4832
0160-4835
0160-4835
0160-4832 | | A706
A707
A708
A709
A7010 | 0180-0228
0180-0228
0180-0291
0180-0291
0180-0291 | 6
6
3
3
3 | 3
3 | CAPACITOR-FXD 22UF+-16% 15VDC TA CAPACITOR-FXD 22UF+-16% 15VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA | 56289
56289
56289
56289
56289 | 150D226X9015B2
150D226X9015B2
150D105X9035A2
150D105X9035A2
150D105X9035A2 | | A7011
A7012
A7013
A7014
A7015 | 0160-4832
0160-4574
0160-4832
0160-4574
0160-4574 | 4
1
4
1
1 | 3 | CAPACITOR-FXD .01UF +-10% 100VDC CER
CAPACITOR-FXD 1000PF +-10% 100VDC CER
CAPACITOR-FXD .01UF +-10% 100VDC CER
CAPACITOR-FXD 1000PF +-10% 100VDC CER
CAPACITOR-FXD 1000PF +-10% 100VDC CER | 28480
28480
28480
28480
28480 | 0160 -4832
0160-4574
0160-4832
0160-4574
0160-4574 | | A7C16
A7C17
A7C18 | 0160-4835
9180-0228
0160-4832 | 7
6
4 | | CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD 22UF++10% 15VDC TA
CAPACITOR-FXD .01UF +-10% 100VDC CER | 28480
56269
28480 | 0160-4835
1500276X901582
0160-4832 | | A7U1
A7U2
A7U3
A7U4 | 7140-0114
9100-1618
9100-1618
9140-0114 | 4
1
1
4 | 2 | INDUCTOR REHCHHMLD 19UH 10% (1660%)355LG
INDUCTOR REHCHHMID 5.6UH 10%
INDUCTOR REHCHHMLD 5.6UH 10%
INDUCTOR REHCHHMLD 10UH 10% (1660%)395LG | 20480
28480
28480
28480 | 9140-0114
9100-1618
9100-1618
9140-0114 | | A7R1
A7R2
A7R3
A7R4
A7R5 | 0683-1025
0683-2245
0683-2245
0683-1845
0757-0277 | 9
7
7
1
8 |
1
2
1
1 | RESISIOR 1K 5% .25W FC TC=-400/+600
RESISTOR 226K 5% .25W FC TC=-800/+900
RESISTOR 220K 5% .25W FC TC=-800/+900
RESISTOR 180K 5% .25W FC TC=-800/+960
RESISTOR 49.9 1% .125W F TC=0+-100 | 01121
01121
01121
01121
24546 | CB1025
CB2245
CB2245
CB1845
C4-1/8T0-4992-F | | A7R6
A7R7
A7R8
A7R9 | 0683-2745
0683-2715
0683-2715
1810-0204 | 2
6
6
5 | 1
2
1 | RESISTOR 270K 5% .25W FC TC=-800/+900
RESISTOR 270 5% .25W FC TC=-400/+600
RESISTOR 270 5% .25W FC TC=-400/+600
NETWORK-RES 8-STP1.0K DBH X 7 | 01121
01121
01121
01121 | CB2745
CB2715
CB2715
208A192 | | A701
A702
A703
A704
A705 | 1820-1430
1820-1423
1820-1112
1820-1194
1820-1888 | 3
4
8
6
5 | 1
2
4
2
1 | IC CNIR TIL IS BIN SYNCHRO POS-EDGE-TPIG
IC MV ITL LS MONOSTEL RETRIG DUAL
IC FF TIL ES D-TYPE POS-EDGE-TRIG
IC CNIR TIL IS BIN UP/DOWN SYNCHRO
IC PRESCR ECL | 01295
01295
01295
01295
01295
04713 | SN74LS161AN
SN74LS123N
SN74LS74AN
SN74LS193N
MC12C13L | | A7U6
A7U7
A7U8
A7U9
A7U10 | 1820-1429
1820-1144
1820-1423
1820-1197
1820-1206 | 0
6
4
9 | 8
1
1
1 | IC CNTR ITE ES DECD SYNCHRO IC GATE ITE ES NOR QUAD 2-INP IC NV ITE ES NORSTEE RETRIG DUAL IC CATE ITE ES NANO QUAD 2-INP IC GATE ITE ES NANO QUAD 2-INP IC GATE ITE ES NANO RIPE 3-INP | 01295
01295
01295
01295
01295 | SN74LS160AN
SN74LS02N
SN74LS123N
SN74LS103N
SN74LS03N
SN74LS27N | | A7011
A7012
A7013
A7014
A7015 | 1820-1194
1820-0630
1820-1202
1820-1429
1820-1429 | 6
3
7
0 | 1
1 | IC CATR TTL LS BIN UP/DOWN SYNCHRO IC MISC ITL IC GATE TTL LS NAND TPL 3-INP IC CATR TTL LS DECD SYNCHRO IC CATR TTL LS DECD SYNCHRO | 01295
04713
01295
01295
01295 | SN74LS193N
MC4044P
SN74LS10N
SN74LS160AN
SN74LS160AN | | A7U16
A7U17
A7U18
A7U19
A7U21 | 1820-1204
1820-1112
1820-1179
1820-1416
1820-1470 | 9
8
1
5 | 1
2
1
1 | TC GATE ITE US WAND DUAL 4-TNP IC FE TIE US DETYPE POSHEDCE-TRIG IC INV TIE US HEX 1-TNP IC SCHMITT-TRIG TIE US INV HEX 1-INP IC MUXR/DATA-SEL ITE US 2-TO-1-LINE GUAD | 01295
01295
01295
01295
01295 | SN74LS20N
SN74LS74AN
SN74LS04N
SN74LS04N
SN74LS14N
SN74LS157N | | A7U21
A2U22
A7U23
A7U24
A7U25 | 18201244
18201429
18201429
18201429
18201429 | 7
0
0
0
0 | 1 | IC HUXR/DATA-SEL TTL LS 4TO-1LINE DUAL
IC CNTR TTL LS DECD SYNCHRO
IC CNTR TTL LS DECD SYNCHRO
IC CNTR TTL LS DECD SYNCHRO
IC CNTR TTL LS DECD SYNCHRO | 01295
01295
01295
01295
01295 | 9N74L9153N
9N74L9160AN
9N74L9160AN
9N74L9160AN
9N74L9160AN | | A7U26
A7U27
A7U28
A7U29
A7U30 | 1820-1429
1820-1112
1820-1112
1820-1119
1820-1251 | 0
8
8
1
6 | 1 | TO CNIR TIL US DECD SYNCHRO IC FF TIL US D'TYPE POS-EDGE-TRIC TO FF TIL US D'TYPE POS-EDGE-TRIG TO INV TIL US HEX 1-INP IC CNIR TIL US DECD ASYNCHRO | 01895
01295
01295
01295
01295 | SN74LS160AN
SN74LS74AN
SN74LS74AN
SN74LS74AN
SN74LS14N
SN74LS196N | | | 5001-0176
04193-60007 | 7 9 | 2 | STRAP-GROUND
COVER | 28480
28480 | 5001-0173
04193-60007 | | | 04193-26507 | 0 | 1 | PCBD BLANK | 28480 | 04193-26507 | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |---|---|-----------------------|------------------|--|--|--| | A8 | 04193~66508 | 7 | 1 | CRYSTAL OSCILLATOR BOARD ASSEMBLY | 28480 | 04193-66508 | | ARC1
ABC2
ABC3
ABC4
ACC5 | 0160-2437
0160-2437
0121-0453
0160-4365
0160-5495 | 1
1
5
2
3 | 2
2
3
7 | CAPACITOR-FDTHRU 5000PF +80 -20% 200V CAPACITOR-FDTHRU 5000PF +80 -20% 200V CAPACITOR-V TRMR-AIR 1.3-5.4PF 175U CAPACITOR-FXD 159F +-5% 200VDC CFR 0+-30 CAPACITOR-FXD 3.9PF +5PF 200VDC CFR | 28480
28480
74970
51642 | 0160-2437
0160-2437
187:0303-125
200-200-NP0-150J | | ABC6
ABC7
ABCB
ABC9
AGC10 | 0160-3877
0160-5495
0160-3879
0160-3879
0160-3879 | 7
3
7
7
7 | 28 | CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD 3.9PF +5PF 200VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER | 28480
28480
28480
28480 | 0160-3879
0160-3879
0160-3879
0160-3879 | | A9011
A8012
A8013
A8014
A8015 | 0160-3978
0160-3879
0160-4385
0160-5495
0160-5495 | 6
7
2
3 | 3 | CAPACITOR-FXD 1000PF +-20% 100VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD 15PF +-5% 200VDC CER 0+-30
CAPACITOR-FXD 3.9PF +5PF 200VDC CER
CAPACITOR-FXD 3.9PF +5PF 200VDC CER | 28480
28480
51642 | 0160-3878
0160-3679
200-200-NPO-150J | | A8C16
A8C17
A8C18
A8C19
A8C20 | 0160-3679
0160-3879
0160-3879
0160-4385
0160-5495 | 7 7 2 3 | | CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD 15PF +-5% 200VDC CER 0+-30
CAPACITOR-FXD 3.5%F +5%F 200VDC CER | 28480
28480
28480
51642 | 0160-3879
6160-3879
9160-3879
200-200-NPG-150J | | A8021
A8022
A8023
A8024
A8025 | 0160-5495
0160-5495
0160-3879
0160-3879
0160-3879 | 3 7 7 7 | | CAPACITOR-FXD 3.9PF +5PF 200VDC CER
CAPACITOR-FXD 3.9PF +5PF 200VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER | 28480
28480
28480 | 0160-3879
3163-3579
0160-3879 | | ABC26
ABC27
ABC28
ABC29 *
ABC30 | 0160-4835
0160-3879
0121-0453
0160-5617
0160-5619 | 7 7 5 7 7 | 9
1
1 | CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-V TRMR-AIR 1.3-5.4PF 175V
CAPACITOR-FXD 3PF +25PF 500VDC CER
CAPACITOR-FXD 8PF +25PF 500VDC CER | 28480
28480
74970
28480 | 0160-4835
0160-3879
187-0303125
0160-2243 | | A8031
A8032
A8033
A8034
A8035 | 0160-5618
0160-3879
0160-3879
0160-3879
0180-1083 | 1 7 7 7 3 | 1 | CAPACITOR-FXD 5PF +25PF 500VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD .3UF 25VDC AL | 28 480
28 480
28480
28480
28 490 | 0160-3679
0150-3879
0160-3879
0180-1083 | | A8036
A9037
A8038
A8039
A8040 | 0160-3679
0180-0229
0160-3679
0160-3879
0160-3879 | 7 7 7 7 | 3 | CAPACITOR-FXD. 01UF +-20% 100VDC DER
CAPACITOR-FXD 33UF++10% 10VDC TA
CAPACITOR-FXD. 01UF +-20% 100VDC DER
CAPACITOR-FXD. 01UF +-20% 100VDC DER
CAPACITOR-FXD. 01UF +-20% 100VDC DER
CAPACITOR-FXD. 01UF +-20% 100VDC DER | 28480
56289
28480
26480
28480 | 0160-3679
150F336X9010R2
0160-3879
0160-3879
0160-3879 | | A8C41
A8C42
A8C43
A8C44
A8C45 | 0180-0229
0180-2979
0180-1746
0160-3879
0160-3879 | 7
8
5
7 | 1
1 | CAPACITOR-FXD 33UF+-10% 10VDC TA
CAPACITOR-FXD 220UF+-20% 16VDC AL
CAPACITOR-FXD 15UF+-10% 20VDC TA
CAPACITOR-FXD .01UF +-20% 100VDC DER
CAPACITOR-FXD .01UF +-20% 100VDC DER | 56287
28480
56289
28480
28480 | 150P336X9010P2
0180-2979
0150P156X9020P2
0160-3879
0160-3879 | | A8C46
A8C47
A6C48
A8C49
A8C50 | 0160-4835
0160-4835
0160-4835
0160-4835
0160-3679 | 7777 | | CAPACITUR-FXD .1UF +-10% 50VDC CER
CAPACITUR-FXD .1UF +-10% 56VDC CER
CAPACITUR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER | 28480
28480
28480
28480
28480 | 0160-4835
0160-4835
0160-4835
0160-4835
0160-4835 | | ABC51
A8C52
ABC53
ABC54
ABC55 | 0160-4835
0160-4835
0180-1083
0180-1083
0160-3879 | 7
7
3
3
7 | | CAPACITOR-FXD .1UF +=10% 50VDC CER
CAPACITOR-FXD .1UF +=10% 50VDC CER
CAPACITOR-FXD 33UF 25VDC AL
CAPACITOR-FXD 33UF 25VDC AL
CAPACITOR-FXD .01UF +=20% 100VDC CER | 28480
28480
28490
28480
28480 | 0160-4835
0160-4835
0180-1083
0180-1083
0160-3879 | | ABC56
ABC57
ABC58
ABC59
ABC60 | 0160-4835
0160-3878
0160-3878
0160-3879
0160-3879 | 7
6
6
7
7 | | CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD 1000PF +-20% 100VDC CER
CAPACITOR-FXD 1000PF +-20% 100VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER | 28480
28480
28480
28480
28480 | 0160-4635
6160-3878
0160-3878
0160-3879
0160-3879 | | A8C61
A6C62
A8C63
A8C64
A8C65 | 0160-3879
0180-0229
0160-3879
0160-4835
0160-3879 | 7 7 7 7 | | CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD .33UF+-10% 10VDC TA
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER | 28480
56269
28480
28480
28480 | 0160-3879
15003368901082
0160-3879
0160-4835
0160-3879 | | ABCR1 | 1902-3171 | 7 | 1 | DIODE-ZNR 11V 5% DO-35 PD=.4W TC=+.362% | 28480 | 1902-3171 | | ABL1
ABL2
ABL3
ABL4
ABL5 | 9100-2247
9100-2250
9100-2891
9100-2891
9100-2251 | 4
9
4
4
0 | 2
1
3 | INDUCTOR RE-CH-MED 100NH 10% .105DX.26LG
INDUCTOR
RE-CH-MED 180NH 10% .105DX.26LG
INDUCTOR RE-CH-MED 50NH 10% .105DX.26LG
INDUCTOR RE-CH-MED 50NH 10% .105DX.26LG
INDUCTOR RE-CH-MED 220NH 10% .105DX.26LG | 28480
28480
28480
28480
28480
28480 | 9100-2247
9100-2250
9100-2891
9100-2891
9100-2891 | | | | | | | | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |---|---|---|---|--|--|--| | ABL6
ABL7
ABL8
AGL9
ABL10 | 9100-2248
9100-2249
9100-2248
9100-2249
9100-2249 | 5 6 5 6 5 | 4 | INDUCTOR RE-CHEMED 120NH 10% .105DX.26LG
INDUCTOR RE-CHEMED 150NH 10% .105DX.26LG
INDUCTOR RE-CHEMED 120NH 10% .105DX.26LG
INDUCTOR RE-CHEMED 150NH 10% .105DX.26LG
INDUCTOR RE-CHEMED 120NH 10% .105DX.26LG | 28480
28480
28480
28480
28480 | 9100-2248
9188-2249
9100-2248
9100-2249
9130-2248 | | A8L11
A8L12
A8L13
A8L14
A8L15 | 9100-2249
9100-2248
9100-2249
9100-2891
9140-0158 | 6
5
6
4
6 | 5 | INDUCTOR RE-CH-MLD 158NH 10% .185DX.26LG
INDUCTOR RE-CH-MLD 120NH 10% .105DX.26LG
INDUCTOR RE-CH-MLD 158NH 10% .105DX.26LG
INDUCTOR RE-CH-MLD 50NH 10% .105DX.26LG
INDUCTOR RE-CH-MLD 10% .105DX.26LG | 28480
28480
28480
28480
28480
28486 | 9100-2249
9100-2248
9100-2249
9100-2691
9140-0158 | | ABL16
ABL17
ABL18
ABL19
ABL20 | 9100-2247
9140-0158
9140-0158
9140-0114
9140-0114 | 4
6
6
4
4 | 3 | INDUCTOR RE-CH-MID 100NH 10% .1050X.26LG
INDUCTOR RE-CH-MID 1UH 10% .1050X.26LG
INDUCTOR RE-CH-MID 1UH 10% .1050X.26LG
INDUCTOR RE-CH-MID 1UM 10% .1666X.26SLG
INDUCTOR RE-CH-MID 10UH 10% .1660X.36SLG | 28480
28486
28480
28480
28480 | 9100-2247
9140-0150
9140-0158
9140-0114
9140-0114 | | A9L21
A8L22
A9L23 | 9140-0158
9140-0158
9140-0114 | 6
6
4 | | INDUCTOR RE-CH-MED TUH 10% .105DX.26FG
INDUCTOR RE-CH-MUD TUH 10% .105DX.26FS
INDUCTOR RE-CH-MUD TOWN 10% .166DX.385FG | 28480
28 4 80
28480 | \$140-0158
\$140-0158
\$146-0114 | | A801
A802
A603
A804
A804 | 1654-0345
1854-0345
1854-0345
1854-0345
1854-0345 | 8 8 8 | 7 | TRANSISTOR NRN 2N5179 ST TO 72 PD=20JHW
TRANSISTOR NRN 2N5179 ST TO 72 PD=20CHW
TRANSISTOR NRN 2N5179 ST TO 72 PD=20JHW
TRANSISTOR NRN 2N5179 ST TO 72 PD=20CHW
TRANSISTOR NRN 2N5179 ST TO 72 PD=20JHW
TRANSISTOR NRN 2N5179 ST TO 72 PD=20JHW | 0.4713
64713
94713
04713
04713 | 2N5179
2N5179
2N5179
2N5179
2N5179
2N5179 | | A9Q6
A6Q7
A8Q8 | 1854-0810
1854-0345
1854-0345 | 8
8
5 | 1 | TRANSISTOR NPN SI PD=625MW FT=200MHZ
TRANSISTOR NPN 2N5179 ST TO 72 PD=230MW
TRANSISTOR NPN 2N5179 ST TO 72 PD=200MW | 23488
34213
04213 | 1854-0810
FN5179
PN5179 | | A6R 1
A9R2
A6R3
A8R4
A6R5 | 2100-3349
0257-0316
0257-0439
0698-3155
0683-3305 | 2
6
4
1
2 | 1
1
3
2
1 | RESISTOR-TRMR 100 10% C SIDE-ADJ 1-TRN
RESISTOR 42.2 1% 125₩ F TC=0+-100
RESISTOR 6.81K 1% 125₩ F IC=0+-190
RESISTOR 4.64K 1% 1125₩ F TC=0+-100
RESISTOR 33 5% 25₩ FC TC≈-400/+500 | 28480
24546
24546
24546
31121 | 2100-3349
C4 1/8-T0 4282 F
C4-1/8-T0-6811 F
C4 1/8-T0-4641 F
CB335 | | ABR6
ABR7
ABR8
ABR9
ABR10 | 6757-0439
0628-3155
6698-3132
0757-0397
0683-4705 | 4
1
4
3
8 | 1
1
3 | RESISTOR 6.81K 1% .125W F TC=0+:166
RESISTOR 4.64K t% .125W F TC=0+-100
RESISTOR 261 1% .125W F TC=0+-100
RESISTOR 68.1 1% .125W F TC=0+-100
RESISTOR 47 5% .25W FC TC=-460/+506 | 24546
24546
24546
24546
01121 | C4 1/8-T0-6011-F
C4 1/8-T0-4641 F
C4 1/8-T0-2710 F
C4-1/8-T0-68R1 F
CB4765 | | ABR11
ABR12
AGR13
ABR14
ABR15 | 9683-6805
0757-0419
9628-3153
0698-0085
9683-3315 | 3
1
9
0
4 | 2
1
2
1
4 | RESISTOR 68 5% .25W FC TC=-400/+500
RESISTOR 681 1% .125W F TC=0+-100
RESISTOR 3.83K t% .125W F TC=0+-100
RESISTOR 3.63K t% .125W F TC=0+-100
RESISTOR 3.30 5% .25W FC TC=-400/+600 | 01121
28480
24546
24546
01121 | CB68-05
0757-0419
C4-1/8-T0-3831-F
C4-1/8-T0-2611-F
C83315 | | ASR16
ABR17
ASR18
ABR19
ABR20 | 0683-3315
0757-0412
0683-5615
0757-0280
0698-3153 | 4
3
1
3
9 | 1
5
1 | RESISTOR 330 5% .25W FC TC=-400/+600
RESISTOR 365 1% .125W F TC=-0+-100
RESISTOR 560 5% .25W FC TC=-400/+600
RESISTOR 16 1% .125W F TC=0+-100
RESISTOR 3.03K 1% .125W F TC=0+-100 | 01121
24546
01121
24546
24546 | C03315
C4-1/8 T9-365R-F
C05615
C4-1/8-T0-1001-F
C4-1/8-T0-3031-F | | ASR21
AGR22
ABR23
AGR24
ABR25 | 0757-0439
0698-3435
0683-5615
0683-1025
0683-5615 | 4
9
1
9 | 1 | RESISTOR 6.01K t% .125W F IC=0+-100
RESISTOR 38.3 5% .25W FC TC=-400/+500
RESISTOR 560 5% .25W FC TC=-400/+600
RESISTOR 1K 5% .25W FC TC=-400/+600
RESISTOR 560 5% .25W FC TC=-400/+600 | 24546
01121
01121
01121
01121 | C4-1/8-F0-6811-F
C85615
C81625
C85615 | | ASR26
ABR27
ASR28
ABR29
ASR30 | 0757-0277
0683-5615
0683-3915
0683-3315
0683-4705 | 8
1
0
4
8 | 1 | RESISTOR 49.9 1% .125W F TC=0+-106
RESISTOR 560 5% .25W FC TC= 43071690
RESISTOR 390 5% .25W FC TC=-40074600
RESISTOR 330 5% .25W FC TC=-40774500
RESISTOR 47 5% .25W FC TC=-46074500 | 24546
01121
01121
01121
01121 | C4-1/8-T0-4992 F
C55615
C63915
CB3315
CR4705 | | A6R31
A6R32
A6R33 | 0698-3447
0757-0398
0698-3432 | 4 4 7 | 1
1
1 | RESISTOR 422 1% .125W F IC=0+-100
RESISTOR 75 1% .125W F IC=6+-106
RESISTOR 26.1 1% .125W F IC=0+-100 | 24546
24546
03888 | 04-1/8-10-4278-F
04-1/8-10-7580-F
PM555-1/8-T0-26R1-F | | A8R34 | 0698-3434 | 9 | 1 | RESISTOR 34.8 1% .125W F TC=0+-100 | 24546 | C4-1/8-T0-34R8 F | | A9R35
A6R36
A9R37
A6R38
A9R39
A9R40
A8R41
A9R42
A9R42
A9R43
A9R44 | 0693-4705
0698-0082
0757-0200
0757-0428
0698-0084
0698-3152
0693-3315
0698-3446
0603-6805
0603-2715
0693-4715 | 8
7
7
1
9
8
4
3
3
6
0 | 1 | RESISTOR 47 5% .25W FC TC=-460/+500 RESISTOR 464 1% .125W F TC=0+-100 RESISTOR 5.62K 1% .125W F TC=0+-100 RESISTOR 1.62K 1% .125W F TC=0+-100 RESISTOR 2.15K 1% .125W F TC=0+-100 RESISTOR 3.46K 1% .125W F TC=0+-100 RESISTOR 3.30 5% .25W FC TC=-400/+600 RESISTOR 383 1% .125W F TC=6+-100 RESISTOR 383 1% .125W F TC=6+-100 RESISTOR 383 1% .125W F TC=6+-100 RESISTOR 383 1% .125W FC TC=-400/+500 RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 470 5% .25W FC TC=-400/+600 | 01121
24546
24546
24546
24546
24546
01121
24546
01121
01121 | C84705
C4-1/8-T0-4640 F
C4-1/8-T0-5601-F
C4-1/8-T0-1621 F
C4-1/8-T0-2151-F
C4-1/8-T0-3481-F
C83315
C4-1/8-T0-3838-F
C86805
C82715
C84715 | | ABT1 | 0693-5615
9140-0641 | 1 8 | , | RESISTOR 560 5% .25W FC TC=-4007+600 | 01121
28480 | CB5/415
9140-0641 | | | | | | | . 0400 | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |--------------------------|---------------------------------|-------------|--------|---|----------------|----------------------------| | A8U1
A8U2 | 1820-1888
182 0- 0869 | 5
8 | 1
2 | IC PRESCR ECL
IC ROVE ECL LINE ROVE QUAD 2-INP | 04713
04713 | MC12013L
MC10115P | | EU8A | 1820-0809 | 8 | | TO ROUR EDL LINE ROUR QUAD 2-INP | 04713
28480 | MC10115P 0410-1338 | | ABY1 | 0410-1338
50010173 | 7 | 1 2 | CRYSTAL-QUARTZ 100MHZ
STRAP-GROUND | 28480 | 5001-0173 | | | 04193-00604
04193-00606 | 7
6
8 | 2 | SHIELD BOX SHIELD BOX | 28480
28480 | 0419300604
0419300606 | | | 04193-00607
04193-60008 | 9 | 3 | SHIELD BOX
COVER | 28480
28480 | 04193-00607
04193-6000B | | | 9170-0029 | 3 | 2 | CORE-SHIELDING BEAD | 28480 | 9170-0029 | | | 04193-26508 | 0 | 1 | PCBD BLANK | 28480 | 04193-26508 | , | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |---
--|-------------------------------------|--------------|--|--|--| | A9 | | | | | | | | A9 | 04193-66509 | 8 | 1 | MIXER BOARD ASSEMBLY | 28480 | 04193-66509 | | A901
A902
A903
A904
A905 | 0160-2437
0160-2437
0160-3975
0160-3675
0160-3875 | 1
3
3
3 | 2
3 | CAPACITOR-EDTHRU 5000PF +80 -20% 200V
CAPACITOR-EDTHRU 5000PF +80 -20% 200V
CAPACITOR-EXD 22PF +-5% 200VDC CER 0+-30
CAPACITOR-EXD 22PF +-5% 200VDC CER 0+-30
CAPACITOR-EXD 22PF +-5% 200VDC CER 0+-30 | 28480
28480
28480
28480
28480
28480 | 0160-2437
0160-2437
0160-3875
0160-3875
0160-3875 | | A5C6
A9C7
A5CB
A9C9
A5C10 | 0160-0263
0160-3879
0160-3879
0160-4835
0160-0263 | 7
7
7
7
7 | 5
8
15 | CAPACITOR-FXD .20UF +-20% SOVDC CER
CAPACITOR-FXD .61UF +-20% 100VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .22UF +-20% SOVDC CER | 28480
28480
28480
28480
28480 | 0160-0263
0160-3879
0160-3879
0160-4835
0160-0263 | | A9011
A9012
A9013
A9014
A9015 | 0160-2246
0160-4835
0160-2265
0160-3879
0160-3879 | 0
7
3
7
7 | 1 | CAPACITOR-FXD 3.6PF +25PF 500VDC CFR
CAPACITOR-FXD .1UF +-10% 50VDC CFR
CAPACITOR-FXD .2PF +-5% 500VDC CFR 0+-30
CAPACITOR-FXD .01UF +-20% 100VDC CFR
CAPACITOR-FXD .01UF +-20% 100VDC CFR | 28480
28480
28480
28480
28480 | 0160-2246
0160-4835
0160-2265
0160-3879
0160-3879 | | A9016
A9017
A9018
A9019
A9020 | 0160-4835
0160-4835
0160-4835
0160-2250
0160-2250 | 7
7
7
6
7 | 2 | CAPACITOR-FXD .1UF +-10% 50VDC CSR
CAPACITOR-FXD .1UF +-10% 50VDC CSR
CAPACITOR-FXD .1UF +-10% 50VDC CSR
CAPACITOR-FXD 5.1PF +-10% 50VDC CSR
CAPACITOR-FXD .1UF +-10% 50VDC CSR | 28480
28480
28480
28480
28480 | 0160-4835
0160-4835
0160-4835
0160-2250
0160-2350 | | A9021
A9022
A9023
A9024
A9025 | 0160-4835
0160-3829
0160-4386
0160-4032
0160-3877 | 7
7
5
4
5 | 1
2
2 | CAPACITOR-FXD .1UF +-10% 50VDC DER
CAPACITOR-FXD .01UF +-20% 100VDC DER
CAPACITOR-FXD 33PF +-5% 30CVDC MICA
CAPACITOR-FXD .01UF +-10% 100VDC DER
CAPACITOR-FXD 10CPF +-20% 200VDC DER | 28480
28480
28480
28480
28480 | 0160-4835
0160-3679
0160-4386
0160-4832
0160-3877 | | A9026
A90 2 7 | 0160-0263
0180-0229 | 7
7 | 3 | CAPACITOR-FXD .92UF +-20% 50VDC CER
CAPACITOR-FXD 33UF+-10% 10VDC TA | 28480
56289 | 0160-0263
150r336X9010B2 | | A9028
A9029 | 0160-4835
0160-4835 | 7 7 | | CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CFR | 28480
28480 | 0160-4835
0160-4835 | | A2030
A2031
A2032
A2033
A2034 | 0160-4835
0160-3679
0160-4935
0160-2250
0160-2264 | 7 7 6 2 | 2. | CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD .1UF +-10% 56VDC CFR
CAPACITOR-FXD 5.1PF +25PF 500VDC CFR
CAPACITOR-FXD 20PF +-5% 506VDC CER 0+-30 | 28480
28480
23480
28480
28480 | 0160~4835
0160~4835
0160~4835
0160~2850
0160~2264 | | A9035
A9035
A9037
A9038
A9039
A9040
A9041
A5042
A9043
A9044
A9045 | 0160-3335
0160-0263
0160-3877
0160-3877
9160-4835
0160-4835
0160-4835
0160-633
0160-62264
0160-4832 | 0
77
5
77
77
77
2 | 1 | CAPACITOR-FXD 470PF +-10X 100VDC CER CAPACITO3-FXD .22UF +-20% 50VDC CER CAPACITO3-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .20UF +-20% 50VDC CER CAPACITOR-FXD .20UF +-20% 50VDC CER CAPACITOR-FXD .20UF +-5% 50VDC CER 01-30 CAPACITOR-FXD .01UF +-10% 100VDC CER | 28480
28480
28480
28480
28480
28480
28480
28480
28480
28480 | 0160-3335
0160-0263
0160-3879
0160-3877
0160-4835
0160-4835
0160-4835
0160-4835
0160-4835
0160-4836 | | A9046
A9047
A9048
A9049
A9050 | 0180-0229
6180-1746 | 7
7
7
5
5 | 4 | CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD 33UF+-10% 10VDC TA
CAPACITOR-FXD 32UF+-10% 10VDC TA
CAPACITOR-FXD 15UF+-10% 20VDC TA
CAPACITOR-FXD 15UF+-10% 20VDC TA | 28480
56289
56289
56289
56289 | 0160-3879
1500336X9010B2
1500336X9013B2
1500156X9020B2
1500156X9020B2 | | A9051
A9052 | | 5 | | CAPACITOR-FXD 15UF+-10% 20VDC TA
CAPACITOR-FXD 15UF+-10% 20VDC TA | 5628 7
56269 | 150D156X9020B2
150D156X9020B2 | | A9CR1
A9CR2 | | 1 | 5 | DIODE-SWITCHING 80V 200MA 2NS DO-35
DIODE-SWITCHING 80V 200MA 2NS DO-35 | 28480
28480 | 1901-0050
1901-0050 | | A9E1 | 1906-0235 | 6 | 1 | DIODE-DOUBLE BALANCED MIXER | 28480 | 1906-0235 | | A9L1
A9L2
A9L3
A9L4
A9L5 | 9180-2249
9180-2249
9180-2247 | 4
6
6
4
6 | 5
2
3 | INDUCTOR RE-CH-MLD 100NH 10% .105DX.26LG
INDUCTOR RE-CH-MLD 150NH 16% .105DX.26LG
INDUCTOR RE-CH-MLD 150NH 10% .105DX.26LG
INDUCTOR RE-CH-MLD 100NH 10% .105DX.26LG
INDUCTOR RE-CH-MLD 10NH 10% .105DX.26LG
INDUCTOR RE-CH-MLD 1UH 10% .105DX.26LG | 28480
28480
28480
28480
28480 | 9100-2247
9100-2249
9100-2249
9100-2247
9140-0158 | | A9L6
A9L7
A9L8
A9L9
A9L10 | 9100-2247
9140-0114
9100-2247 | 6
4
4
4 | 4 | INDUCTOR RE-CH-MLD 1UH 10% .105DX.26LG
INDUCTOR RE-CH-MLD 130NH 10% .105DX.26LG
INDUCTOR RE-CH-MLD 10UH 10% .166DX.385LG
INDUCTOR RE-CH-MLD 10UH 10% .195DX.26LG
INDUCTOR RE-CH-MLD 10UHH 10% .195DX.26LG
INDUCTOR RE-CH-MLD 10UHH 10% .105DX.26LG | 28480
28480
28480
28480
28480 | 9140-0158
9130-2247
9140-0114
9130-2247
9100-2247 | | A9L11
A9L12
A9L13
A9L14 | 9140-0159
9140-0114 | 4 6 4 | | INDUCTUR RE-CH-MLD 100H 10% .166DX.355LG
INDUCTOR RE-CH-MED 10H 10% .105DX.26LG
INDUCTOR RE-CH-MLD 100H 10% .166DX.355LG
INDUCTOR RE-CH-MLD 100H 10% .166DX.355LG | 28480
28480
28480
28480 | 9140-0114
9140-0158
9140-0114
9140-0114 | | | | | | | | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |--|---|-----------------------|------------------|---|--|--| | A501
A202
A503
A904
A505 | 1854-0247
1853-0018
1654-0345
1853-0018
1854-0345 | 9
0
8
0
8 | 1
4
3 | TRANSISTOR NPN SI 10-39 PD=1W FT=800MHZ TRANSISTOR PNP SI TO-72 PD=260MW FT=1CHZ TRANSISTOR NPN 2N5179 SI TO-72 PD=201MW TRANSISTOR PNP SI TO-72 PD=200MW FT=1CHZ TRANSISTOR NPN 2N5179 SI 10-72 PD=200MW | 28480
28480
04713
28480
04713 | 1654-0247
1853-0018
2N5179
1863-0018
2N5179 | | A796
A797
A798 | 1853-0018
1854-9345
1853-0018 | G
(3) | | TRANSISTOR PNP SJ TO-72 PD=200MW FT=1CHZ
TRANSISTOR NPN 2N5179 ST TO-72 PD=200MW
TRANSISTOR PNP ST TO-72 PD=200MW FT=1CHZ | 28480
0.4713
28480 | 1853-0018
2×5179
1853-0018 | | ASR1
ASR2
ASR3
ASR4
ASR5 | 0757-0277
0757-0398
0757-0277
0757-0180
0757-0180 | 84822 | 5
1
2 | RESISTOR 49.9 1% .125W F TC=0+-190
RESISTOR 75 1% .125W F TC=0+-100
RESISTOR 49.9 1% .125W F TC=0+-190
RESISTOR 31.6 1% .125W F TC=0+-100
RESISTOR 31.6 1% .125W F TC=0+-100 | 24546
24546
24546
28480
28480 | C4-1/8-T0-4992-F
C4-1/8-T0-7580-F
C4-1/8-T0-4992-F
0757-0180
0757-0180 | | A2R6
A2R7
A2R8
A2R9
A2R10 | 0757-0401
0757-0274
0698-3153
0757-0401
0698-3446 | 0
5
9
0
3 | 8
4
4
3 | RESISTOR 100 1% .125W F TC=0+-100
RESISTOR 1.21K 1% .125W F TC=0+-100
RESISTOR 3.83K 1% .125W F TC=0+-100
RESISTOR 100 1% .125W F TC=0+-100
RESISTOR 383 1% .125W F TC=0+-100 | 24546
24546
24546
24546
24546 | C4-1/8-T0-101-F
C4-1/8-T0-1211-F
C4-1/8-T0-3831-F
C4-1/8-T0-101-F
C4-1/8-T0-383R-F | | ASR11
APR12
ASR13
APR14
ASR15 | 0757-0405
0698-3440
0698-3439
0757-0774
0690-3153 | 4
7
4
5
9 | 3
5
2 | RESTSTOR 162 1% .185W F TC=9+-130
RESISTOR 196 1% .125W F TC=0+-100
RESTSTOR 178 1% .125W F TC=0+-100
RESTSTOR 1.21K 1% .125W F TC=0+-100
RESTSTOR 3.83K 1% .125W F TC=0+-100 | 24546
24546
24546
24546
24546 | C4-1/8-T0-162R-F
C4-1/8-T0-196R-F
C4-1/8-T0-176R-F
C4-1/8-T0-1211-F
C4-1/8-T0-3831-F | | A9216
A9217
A9218
A9219
A920 | 0757-0316
0698-3445
0757-0401
0757-0417
0757-0401 | 6
3
0
8
0 | 3 | RESISTOR 42.2 1% .125W F TC=0+-100
RESISTOR 383 1% .125W F TC=0+-100
RESISTOR 100 1% .125W F TC=0+-100
RESISTOR 562 1% .125W F TC=0+-100
RESISTOR 100 1% .125W F TC=0+-100 |
24546
24546
24546
24546
24546 | C4-1/8-T0-42R2-F
C4-1/8-T0-383R-F
C4-1/8-T0-110-F
C4-1/8-T0-562R-F
C4-1/8-T0-101-F | | ASR21
ASR22
ASR23
ASR24
ASR25 | 0683-3315
0683-2215
1810-0203
6698-3440
0757-0401 | 4
1
5
7
0 | 5 | RESISTOR 330 5% ,25W FC TC=-400/+600
RESISTOR 220 5% ,25W FC TC=-400/+606
NETWORK-RES 8-51P470.0 GPM X 7
RESISTOR 196 1% ,125W F TC=0+-100
RESISTOR 100 1% ,125W F TC=0+-100 | 01121
01121
01121
24546
24546 | CR3315
CB2215
208A471
C4-1/8-T0-196R-F
C4-1/8-T0-101-F | | A9R26
A9R27
A9R28
A9R29
A9R30 | 6757-0277
0698-3153
0757-0274
0757-0316
0698-3440 | 8 9 5 6 7 | | RESISTOR 49.9 1% .125W F TC=0+-100
RESISTOR 3.93K 1% .125W F TC=0+-190
RESISTOR 1.21K 1% .125W F TC=0+-100
RESISTOR 42.2 1% .125W F TC=0+-100
RESISTOR 196 1% .125W F TC=0+-130 | 24546
24546
24546
24546
24546 | C4-1/8-T0-4992-F
C4-1/8-T0-3831-F
C4-1/8-T0-1211-F
C4-1/8-T0-4282-F
C4-1/8-T0-196R-F | | A9R31
A9R32
A9R33
A9R34
A9R35 | 6757-0405
0698-3446
0698-3439
0757-0417
0757-0401 | 4
3
4
8
0 | | RESISTOR 162 1% .125W F TC=0+-100 RESISTOR 383 1% .125W F TC=0+-100 RESISTOR 178 1% .125W F TC=0+-100 RESISTOR 562 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 | 24546
24546
24546
24546
24546 | C4-1/8-T0-162R-F
C4-1/8-T0-383R-F
C4-1/8-T0-178R-F
C4-1/8-T0-562P-F
C4-1/8-T0-101-F | | A9R 36
A5R37
A5R38
A5R37
A5R37 | 0683-4715
0683-3315
0683-2215
1810-0203
0757-0401 | 0
4
1
5 | | RESISTOR 470 5% .25W FC TC=-400/+600
RESISTOR 330 5% .25W FC TC=-403/+600
RESISTOR 220 5% .25W FC TC=-400/+600
NETWORK-RES 8-SIP470.0 0:HM X 7
RESISTOR 100 1% .125W F TC=0+-100 | 01121
01121
01121
01121
21121
24546 | CB4715
CB3315
CB2215
20B4471
C4-1/8-T0101F | | 69R41
69R42
69R43
69R44
69R45 | 8698-3440
6757-0277
0698-3440
0698-3447
0698-3153 | 7
8
7
4
9 | 1 | RESISTOR 126 1% .175W F TC=0+-100
RESISTOR 49.9 1% .125W F TC=0+-100
RESISTOR 196 1% .125W F TC=0+-100
RESISTOR 422 1% .125W F TC=0+-100
RESISTOR 3.83K 1% .125W F TC=0+-100 | 24546
24546
24546
24546
24546
24546 | C41/8-T0-196R-F
C4-1/8-T04992-F
C41/8-T0-196R-F
C41/8-T0-422P-F
C41/8-T0-3831-F | | A9R46
A9R47
A9R48
A9R49
A9R50 | 0757-0274
0757-0316
0757-0405
0757-0277
0757-0346 | 5
6
4
8
2 | | RESISTOR 1.21K 1% .125W F TC=0+-10C
RESISTOR 42.2 1% .125W F TC=0+-100
RESISTOR 162 1% .125W F TC=0+-10C
RESISTOR 49.9 1% .125W F TC=0+-10O
RESISTOR 10 1% .125W F TC=0+-10O | 24546
24546
24546
24546
24546 | C4-1/8-TO-1211-F
C4-1/8-T0-42R2-F
C4-1/8-T0-162R-F
C4-1/8-T0-4992-F
C4-1/8-T0-1080-F | | A9851
A9R52 | 0757-0401
0757-0417 | 0 | | RESTSTOR 100 1% .125W F TC=0+-100
RESTSTOR 562 1% .125W F TC=0+-100 | 24546
24546 | C4-1/8-T0-101-F
C4-1/8-T0-562R-F | | A7U1
A7U2
A7U3 | 1820-9810
1820-1888
1820-9810 | 1
5
1 | 1 | TO ROVE ECLITINE ROVE TPL 2-INP
TO PRESCR ECL
TO ROVE ECLITINE ROVE TPL 2-INP | 04713
04713
04713 | MC10116P
MC12013L
MC10116P | | | 5001-0176
04191-03614
04193-00604
04193-03507
04193-00608 | 6 9 | 1
2
1 | STPAP-GROUND
SHIELD
SHIELD BOX
SHIELD BOX
SHIELD BOX | 28480
28480
28480
28480
28480 | 5001-0173
04191-00614
04193-00604
04193-00607
04193-00608 | | | 04193-60009 | | | COVER PCBD BLANK | 28480
28480 | 04193-60009
04193-26509 | | | | | | | | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C | Qty | Description | Mfr
Code | Mfr Part Number | |--|--|--|-------------|--|---|---| | A10 | | | | | Code | | | A10 | 04193-66510 | 1 | 1 | VOLTAGE CONTROLLED OSCILLATOR DD. ASSY | 28480 | 04193~66510 | | A1001
A1002
A1003
A1004
A1005
A1006
A1007
A1008
A1009
A10010
A10011 | 0160-2437
0160-2437
0160-2437
0160-2437
0160-3679
0160-3879
0160-3879
0160-3879
0160-3879
0160-3879 | 1
1
7
7
6
7
7
6
7
7 | 3 47 12 | CAPACITOR-FDTHRU 5000PF +80 -20% 2600 CAPACITOR-FDTHRU 5000PF +80 -20% 20% 20% CAPACITOR-FDTHRU 5000PF +80 -20% 20% 20% CAPACITOR-FXD .01UF +-20% 1000PC CER | 23 480
28 480
28 480
28 480
28 480
28 480
28 480
28 480
28 480
28 480 | 0160-2437
0160-2437
6160-2437
0160-3879
0160-3878
0160-3878
0169-3879
0160-3878
0160-3878
6160-3878 | | A1.0012
A1.0013
A7.0014
A1.0015
A1.0016 | 0160-3879
0160-3878
0160-3879
0160-3679
0160-3878 | 7
6
7
7
6 | | CAPACITOR-FXD. 0100 + 20% 10000 CEP
CAPACITOR-FXD. 130PF + 20% 130F0 CER
CAPACITOR-FXD. 010F + 20% 100F0 CER
CAPACITOR-FXD. 010F X05-4 TO 00 CER
CAPACITOR - 010F X05-4 TO 00 CER
CAPACITOR - 010F CER | 28486
28480
28480
28480
28480
28486 | 0160-3879
0160-3878
0160-3879
0160-3879
0160-3879 | | A19017
A10018
A10019
A10020
A10021 | 0160-3679
0160-3879
0160-3679
0160-3879
0160-3879 | 7
7
7
7
7 | | CAPACITOR-FXD .01UF + 25% 1000DC CER
CAPACITOR-FXD .01UF +-20% 1000DC CER
CAPACITOR-FXD .01UF +-20% 1000DC CER
CAPACITOR-FXD .01UF +-20% 1000DC CEP
CAPACITOR-FXD .01UF +-20% 1000DC CER | 28480
28486
28480
28480
28480 | 3163-3629
6166-3879
3163-3679
6166-3879
3163-3879 | | A1 0022
A1 0023
A1 0024
A1 0025
A1 0026 | 0160~3879
0160~3877
0160~3878
0160~3878
0160~3878 | 7
5
6
7
6 | 5 | CAPACITOR-FXD .01UF +-20% 1000DC GER
CAPACITOR-FXD 139PF +-20% 2300DC CER
CAPACITOR-FXD 1000PF +-20% 1000DC GER
CAPACITOR-FXD .01UF +-20% 1300DC GER
CAPACITOR-FXD 1000PF +-20% 1000DC GER | 28480
28480
28490
28480
28480
28480 | 0166-3829
0160-3627
0160-3528
0160-3828
0160-3828 | | A19027
A10028
A10029
A10030
A10031
A10032
A10033
A10034
A10035
A10035
A10036 | 0160-3879
6160-3879
0160-3979
0160-3879
0160-5495
0160-3879
0160-3879
0160-3878
0160-3878 | 7
7
7
7
7
6
7
6 | 2 | CAPACITOR-FXD .01UF + 20% 100VDC CER CAPACITOR-FXD .01UF +-20% .000PF +-20% 100VDC CER | 28480
26480
26480
26480
26480
26480
26480
26480
26480
26480
26480 | 0160-3829
6160-3829
0166-3829
0160-3829
0160-3829
0166-3829
0166-3829
0160-3829
0160-3829 | | A10C3B
A10C3P
A10C4O
A10C41
A10C42
A10C43
A10C45
A10C45
A10C46
A10C47
A10C48
A10C49
A10C50
A10C50
A10C51
A10C51 | 0160-3879
6180-1083
0160-3879
6160-3879
0160-3879
0160-3879
0160-3877
0160-3877
0160-3879
0160-3879
0160-3879
0160-3879
0160-3879
0160-3879
0160-3879
0160-3879 | フ3ファファ 5ファファファロ88 | 1 | CAPACITOR-FXD .01UF +-20% 100VDC CER 200VDC CER CAPACITOR-FXD .01UF +-20% 100VDC .220UF+-20% 16VDC AL CAPACITOR-FXD .220UF+-20% 16VDC AL | 78480
28480
78480
20480
78480
28480
28480
78480
78480
78480
78480
28480
28480
28480
28480 | 0160-3879 6180-1083 0140-3879 6140-3879 0140-3879 0160-3877 0160-3879 0160-3879 0160-3879 0160-3879 0160-3879 0160-3879 0160-3879 0160-3879 0160-3879 0160-3879 | | A10055
A10056
A10057
A10058
A10059 | 0160-3879
0160-3879
0160-3877
0160-3877
0160-3879 | 7
7
5
5
7 | | CAPACITOR-FXD .01UF +-26% 100VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER
CAPACITOR-FXD 100PF +-20% 200VDC CER
CAPACITOR-FXD 100PF +-20% 200VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER | 23480
28480
23480
28480
28480 | 6166-3879
6160-3879
6160-3977
9160-3877
6160-3879 | | A10060
A10061
A10062
A10063 | 0160-3878
0160-3878
0160-3878
0160-3879 | 6
6
6
7 | | CAPACITOR-FXD 1000PF +-20% 100VDC CER
CAPACITOR-FXD 1930PF +-29% 100VDC CER
CAPACITOR-FXD 1000PF +-20% 100VDC CER
CAPACITOR-FXD .01UF +-20% 100VDC CER | 28486
28480
28480
28480 | 0169 3878
0160-3878
0160-3878
0160-3879 | | A10C64
A10C65
A10C66
A10C67
A10C68
A10C70
A10C70
A10C71
A10C72
A10C73
A10C73 | 0160-4385
0160-2055
0160-3690
0160-3872 | 7
9
9
9
1
2
9
4
0
6 | 1
1
1 | CAPACITOR-FXD .01UF
+-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 109VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD 15PF +-5% 200VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD 100VDC CER CAPACITOR-FXD 100VDF +-20% 100VDC CER CAPACITOR-FXD 100VDF +-20% 100VDC CER | 28486
28480
28480
26480
26480
26480
28489
51642
23490
26480
26480 | 6166-3879
0160-3879
6160-2055
0160-2055
0160-2055
0160-3873
200-200-NPO-150J
6160-2055
0160-1690
0160-3872
0160-3878 | | | 0.100~30/8 | 0 | | GENERALIUK-FAN TUUURF 1-20% 138VDC CER | ₹ 9480 | v169-387B | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |--|---|--|------------------------|--|--|---| | A13075
A18076
A18027
A18028
A13029 | 0160 -3829
0160-3827
0160-3829
0160-3829
0160-3829 | 7 5 7 7 7 7 7 P | | FAPACITOR-FXD .01UF +-20% 1300DC CER CAPACITOR-FXD .01UF +-20% 1300DC CER CAPACITOR-FXD .01UF +-20% 1300DC CER CAPACITOR-FXD .01UF +-20% 1000DC CER CAPACITOR-FXD .01UF +-20% 1000DC CER | 28480
28480
28480
28480
28480
28480 | 0160-3879
0160-3877
0160-3879
0160-3879
0160-3879 | | A10080 | 0160 3879 | 7 | | CAPACITOR-FXD .01UF + 28% 100VDC CER | 28486 | 0160-3879 | | A190R1
A100R2
A100R3
A100R4
A100R5 | 1702-3171
1901-0948
1901-0948
1901-0948
6122-6169 | 9
8
8
8 | 1
3 | 01006-7NR 11V 5X DO-35 PD=.4W 1C=+.062X
D1007-192222
D10D5-192222
D10DC-192222
D10D7-VVC | 28480
28480
28480
28480
28490 | 1902-3171
1901-0948
1901-0948
1901-0948
0122-0169 | | A10CR6 | 1961-0040 | 1 | 1 | DIODE-SWITCHING 36V 50MA 2NS DO 35 | 28480 | 1901-0040 | | A1 301
A1 002
A1 003
A1 004
A1 305 | 1654 - 0345
18540345
18540345
1853 - 0452
16543247 | 8
8
8
3
9 | 5
1
1 | TRANSISTOR NPN 2N5179 ST TO-72 PD=200MW
TRANSISTOR NPN 2N5179 ST TO-72 PD=200MW
TRANSISTOR NPN 2N5179 ST TO-72 PD=200MW
TRANSISTOR NPN 2N5179 ST TP=425MW FT=200MMZ
TRANSISTOR NPN ST TO-39 PD=1W FT=800MMZ | 04713
04713
04713
28480
28480 | 0N5179
2N5179
2N5179
1833-0459
1854-0247 | | A10Q6
A10Q7
A10Q8
A10Q9 | 1854-0345
1854-0130
1855-0124
1854-0345 | 8
9
3
8 | 1 | TRANSISTOR NRN 205179 SJ TO-72 PD=200MW
IRANSISTOR-NRN 25C15FB
TRANSISTOZ-FET 35k48
IRANSISTOR NRN 205179 ST TO-72 PD=200MW | 04713
28480
28480
04713 | 2N5:179
1654-0130
1835-0124
2N5:179 | | A10R1
A10R2
A10R3
A10R4
A10R5 | 0.683~4715
0.683~1025
0.757~0346
0.698~3437
6.683~2215 | 0
9
2
2 | 1
13
3
1
1 | RESISTOR 470 5% .25W FC TC=-400/+600
RESISTOR 16 1% 5% .25W FC TC= 400/+600
RESISTOR 10 1% .125W F TC=0+-100
RESISTOR 133 1% .125W F TC=0+-100
RESISTOR 220 5% .25W FC TC=-400/+600 | 01121
01121
24546
24546
01121 | CB4715
CB1025
C4 1/8-T0-10R0-F
C4 1/8-T0-133R-F
CB2215 | | A19R6
A10R7
A10R8
A10R9
A19R10 | 0757 - 0277
0683 - 1625
0757 - 0346
0698 - 7265
0757 - 0401 | 3
9
2
0 | 4 4 | RESISTOR 49.9 1% .185W F TC=0+-100
RESISTOR 1K 5% .25W FC TC=-4607+600
RESISTOR 10 1% .155W F TC=0+-100
RESISTOR 51.1 1% .05W F TC=0+-100
RESISTOR 190 1% .125W F TC=0+-100 | 24546
01121
24546
24546
24546 | C4-1/8-T0-4992-F
CB1025
C4-1/8-T0-10R0-F
C3-1/8-T00-51R1-G
C4-1/8-T0-101-F | | ALOR11
A10R12
ALOR13
A10R14
ALOR15 | 0757-0401
0757-0277
0693-1025
0757-0346
0752-6401 | 0
8
9
2
0 | | RESISTOR 100 1% .125W F TC=0+-100
RESISTOR 49.9 1% .125W F TC=0+-100
RESISTOR 1K 5% .25W FC TC=-460/+660
RESISTOR 10 1% 1.25W F TC=0+-100
RESISTOR 10 1% .125W F TC=6+-100 | 24546
24546
01121
24546
24546 | C4-1/8-T0-101-F
C4-1/8-T0-4992-F
C81025
C4-1/8-T0-10R0-F
C4-1/8-T0-101-F | | A10R16
A10R17
A10R18
A10R19
A10R20 | 9658-7295
6752-6401
9752-9277
6683-1625
9683-3915 | 0
8
9 | 1 | RCSISIOR 51.1 1Z .05W F IC=0+-100
RESISIOR 100 1Z .125W F IC=0+-100
RESISIOR 49.2 1Z .125W F IC=0+-100
RESISIOR 1K 5Z .25W FC IC=-400/+600
RESISIOR 390 5Z .25W FC IC=-400/+600 | 24546
24546
24546
01121
01121 | F3-1/B-T30-51R1 G
C4-1/B-T0-101-F
C4-1/B-T0-4992-F
CB1025
CB3915 | | A10R21
A13202
A10R23
A13R24
A10R25 | 0683-3315
0683-4705
0757-0403
0757-0403
0698-0682 | 4
8
2
2
7 | 1
1
2
1 | RESISTOR 330 5% ,25W FC TC=-400/+600
RESISTOR 47 5% ,25W FC TC=-400/+500
RESISTOR 121 1% ,125W F TC=0+-100
RESISTOR 121 1% ,125W F TC=0+-100
RESISTOR 464 1% ,125W F TC=0+-100 | 01121
01121
24546
24546
24546 | CR3315
CB4705
C4-1/8-T0-121R-F
C4-1/8-T0-121R-F
C4-1/8-T0-4646-F | | A13826
A16827
A16828
A16829
A10830 | 0757-0200
0757-0428
0698-7205
6757-0416
0603-1025 | 7
1
0
7
9 | 2
2
1 | RESISTOR 5.62K 1% .125W F TC=0+-100
RESISTOR 1.62K 1% .125W F TC=0+-100
RESISTOR 51.1 1% .05W F TC=0+-100
RESISTOR 511 1% .125W F TC=0+-100
RESISTOR 1K 5% .25W FC TC= 4007+600 | 24546
24546
24546
24546
01121 | C4-1/B-T0-5621 F
C4-1/B-T0-1621-F
C3-1/B-T00-51R1 G
C4-1/B-T0-511P-F
CB1025 | | A10R31
A10R32
A10R33
A10R34
A10R35 | 0693-1025
0683-1025
0683-1025
0698-7205
0757-1094 | 9 9 0 9 | 1 | RESISTOR 1K 5% .25W FC TC=-400/+600
RESISTOR 1K 5% .25W FC TC=-400/+600
RESISTOR 1K 5% .25W FC TC=-406/+600
RESISTOR 51.1 1% .05W F TC=0+-190
RESISTOR 1.47K 1% .125W F TC=0+-100 | 01121
01121
01121
24546
24546 | C81025
CB1025
CB1025
C3-178-T00-51R1-G
C4-178-T0-1471-F | | A10R36
A16R37
A10R38
A10R39
A10R40 | 0698-3154
0698-0085
0698-3155
0757-0280
0683-3305 | 0
1
3
2 | 1
1
1
1 | RESISTOR 4.22K 1Z .125W F FC=0+-190
RESISTOR 2.61K 1Z .125W F TC=0+-100
RESISTOR 4.64K 1Z .125W F TC=0+-100
RESISTOR 1K 1Z .125W F TC=0+-100
RESISTOR 1K 1Z .125W F TC=0+-100
RESISTOR 33 5Z .25W FC TC=-490Z+500 | 24546
24546
24546
24546
21121 | C4-1/8-T0-4221 F
C4-1/8-T0-2/11-F
C4-1/8-T0-4641 F
C4-1/8-T0-1001-F
CB3305 | | A16R41
A16R42
A16R43
A16R44 | 0757-0277
0757-0417
0757-0428
0757-0200 | 8
1
7 | 1 | RESISTOR 49.9 1% .125W F TC=0+-100
RESISTOR 5A2 1% .125W F TC=0+-100
RESISTOR 1.62K 1% .125W F TC=0+-100
RESISTOR 5.62K 1% .125W F TC=0+-100 | 24546
24546
24546
24546
24546 | C4-1/8-T0-4992-F
C4-1/8-T0-562R-F
C4-1/8-T0-1621-F
C4-1/8-T0-5621-F | | A1 001
A1 002
A1 003
A1 004
A1 005 | 1820-6493
1820-1868
1826-0372
1826-0372
1826-0372 | 8 12 12 12 12 12 12 12 12 12 12 12 12 12 | 1
1
3 | IC FC TTL S D-TYPE POS-EDGE-TRIG
IC PRESCR FCL
IC 5GHZ TRANSISTOR PAIR
IC 5GHZ TRANSISTOR PAIR
IC 5GHZ TRANSISTOR PAIR | 01295
04713
28480
28480
28480 | SN74S74N
MC12013L
1826-0372
1826-0372
1826-0372 | | | 3780 -1007
5001-0176
04191-00601
04193-00604
04193-00607 | 6 | 11
2
1
3
2 | STANDOFF-RIVET ON
STRAP-GROUND
SHIELD-BOX
SHIELD-BOX
SHIELD-BOX | 00000
28480
28480
28480
28480 | ORDER BY DESCRIPTION
50010173
04171-00601
04173-00604
04193-00607 | Table 6-3. Replaceable Parts | | Table 6-3. Replaceable Parts | | | | | | | | |--------------------------|------------------------------|-----|--------|---------------------|----------------|----------------------------|--|--| | Reference
Designation | HP Part
Number | ОD | Qty | Description | Mfr
Code | Mfr Part Number | | | | | 04193-20006
04193-60010 | 4 4 | 1
1 | SHIELD-BOX
COVER | 28480
28480 | 04193-20086
04193-60010 | | | | | 04193-26510 | 1 1 | 1. | PCBD BLANK | 28480 | 04193-26510 | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |--|---|---------------------------|---------------------------------|---
--|--| | A11 | 04193-66511 | 2 | 1 | INTEGRATOR AMPLIFIER BOARD ASSEM | 28480 | 84193-66511 | | A11C1
A11C2
A11C3
A11C4
A11C5 | 0180-1083
0160-4832
0180-1083
0160-4835
0160-4835 | 3
4
3
7
7 | 6
5
9 | CAPACITOR-FXD 33UF 25VDC AL CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 33UF 25VDC AL CAPACITOR FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER | 28480
28480
28480
28480
28480 | 0180-1083
0160-4832
0180-1083
0160-4835
0160-4835 | | A1106
A1107
A1108
A1109
A11010 | 0180-0228
0160-4835
0160-4832
0180-0116
0180-0228 | 6
7
4
1
6 | 3 | CAPACITOR FXD 22UF+-10% 15VDC TA
CAPACITOR-FXD .1UF +-16% 50VDC CER
CAPACITOR-FXD .01UF +-10% 130VDC CER
CAPACITOR-FXD 6.8UF+-10% 35VDC TA
CAPACITOR-FXD 22UF+-10% 15VDC TA | 56269
23480
29480
56289
56269 | 150D226X901582
0160-4835
0160-4832
150D685X903582
150D226X901582 | | A11011
A11012
A11013
A11014
A11015 | 0160-4835
0160-4835
0180-0116
0160-4835
0180-0116 | 7
7
1
7
1 | | CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CFR
CAPACITOR-FXD 6.8UF+-10% 35VDC TA
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD 6.8UF+-10% 35VDC TA | 28480
28480
56287
28480
56289 | 0160-4835
0160-4835
150P685X9035B2
0160-4835
150P685X9035B2 | | A11016
A11017
A11018
A11019
A11028 | 0160-4835
0160-4835
0160-3501
0180-1083
0160-4832 | 7
7
2
3
4 | 1 | CAPACITOR FEXD .1UF +-10% 50VDC CER
CAPACITOR FEXD .1UF +-16% 50VDC CEP
CAPACITOR FEXD AUF +-10% 50VDC MET-POLYC
CAPACITOR FEXD 33UF 25VDC AL
CAPACITOR FEXD .01UF +-10% 100VDC CER | 28480
28480
28480
28480
28480
88480 | 0160 4835
0160-4835
0160-3501
0100-1003
0160-4832 | | A11021
A11022
A11023
A11024
A11025 | 0160-4832
0160-4832
0180-1083
0180-1083
0180-1083 | 4
4
3
3
3 | | CAPACITOR-FXD .01UF +-10% 100VDC CER
CAPACITOR-FXD .01UF +-10% 100VDC CER
CAPACITOR-FXD 33UF 25VDC AL
CAPACITOR-FXD 32UF 25VDC AL
CAPACITOR-FXD 33UF 25VDC AL | 28488
28480
28480
28480
28480 | 0160-4832
0160-4832
0180-1083
0180-1083
0180-1083 | | A11026 | 0160-4935 | 7 | | CAPACITOR FXD .1UF +-10% 50VDC CER | 28480 | 0140-4035 | | A110R1
A110R2
A110R3
A110R4
A110R5 | 1901-0046
1902-3165
1901-0040
1901-0040
1901-0040 | 1
9
1
1 | 6
1 | DIODE-SWITCHING 30V 50MA 2NS DO-35
DIODE-ZNR 10.5V 5V DO-35 PD=.4W
DIODE-SWITCHING 30V 50MA 2NS DO-35
DIODE-SWITCHING 30V 50MA 2NS DO-35
DIODE-SWITCHING 30V 50MA 2NS DO-35 | 28480
28480
28480
28480
28480 | 1901-0040
1902-3165
1901-0040
1901-0040
1901-0040 | | A11CR6
A11CR7
A11CR8
A11J1
A11J2
A11L1
A11L2
A11L3
A11L3
A11L3
A11Q1
A11Q2
A11Q3
A11Q4
A11Q5 | 1902-3263
1901-0040
1901-0040
1251-4822
1251-4822
9140-0210
9140-0210
9140-0114
1854-0810
1854-0810
1855-0111 | B 1 1 6 6 1 1 4 2 2 8 8 3 | 1
2
2
1
5
2
5 | DIODE-ZNR 24.9V 2% DO-35 PD=.4W DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 CONNECTOR 3-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE (INDUCTOR RF-CH-MLD 100UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 100UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 10UH 10% .166DX.385LG IRANSISTOR NPN SI PD-625MW FT=200MHZ TRANSISTOR NPN SI PD-625MW FT=200MHZ TRANSISTOR FET 25K43SD TRANSISTOR-FET 25K43SD TRANSISTOR-FET 25K43SD TRANSISTOR-FET 25K43SD | 29.48 0
28.48 0 | 1972-37263 1901-0040 1901-0040 1251-4822 1251-4822 9140-0210 9140-0114 1854-0810 1854-0810 1855-0111 1855-0111 | | A11Q6
A11Q7
A11Q8
A11Q9
A11Q10 | 1853-0459
1853-0459
1853-0459
1854-0810
1854-0810 | 3
3
2
2 | | TRANSISTOR PNE SJ PD=625MW FT=200MHZ
TRANSISTOR PNE SI PD=625MW FT=200MHZ
TRANSISTOR PNE SI PD=625MW FT=200HHZ
TRANSISTOR NEN SI PD=625MW FT=200MHZ
TRANSISTOR NEN SI PD=625MW FT=200MHZ | 28480
28480
28480
28480
28480 | 1853-0459
1653-0459
1853-0459
1854-0810
1854-0810 | | A11Q11
A11Q12 | 1854-9810
1853-0459 | 2 | | TRANSISTOR NPN SI PD=625MW FT=200MHZ
TRANSISTOR PN2 SI PD=625MW FT=200MHZ | 28480
28480 | 1854-0810
1853-0459 | | A11R1 * A11R2 * A11R3 A11R4 A11R5 | 0757-0258
0757-0288
2100-3273
0698-3558
0698-3459 | 1
1
1
8
6 | 2
1
2
2 | RESTSTOR 9.09K 1% .125W F TC=0+-130
RESJSTOR 9.09K 1% .125W F TC=0+-100
RESJSTOR-1RMR 2K 10% C SIDE-ADJ 1-TRN
RESJSTOR 4.02K 1% .125W F TC=0+-100
RESTSTOR 40.2K 1% .125W F TC=0+-130 | 19701
19701
28480
24546
24546 | MF4C1/8-T0-9091-F
MF4C1/8-T0-9091-F
2100-3273
C4-1/8-T0-4021-F
C4-1/8-T0-4022-F | | A11R6
A11R7
A11R8
A11R9
A11R10 | 0.693-1025
0.683-1025
0.683-1015
0.698-3153
0.683-3305 | 9
9
7
9
2 | | RESISTOR 1K 5% .25W FC TC=-400/+600
RESISTOR 1K 5% .25W FC TC=-430/+600
RESISTOR 100 5% .25W FC TC=-400/+500
RESISTOR 3.03K 1% .125W F TC=0+-100
RESISTOR 33 5% .25W FC TC=-400/+500 | 01121
01121
01121
24546
01121 | CB1025
CB1025
CB1015
C4-1/8-T0-3831-F
CB3305 | | A11R11
A11R12
A11R13
A11R14
A11R15 | 0698-3447
0683-2225
0683-2225
0757-0280
0683-3305 | 4
3
3
3
2 | a
3 | RESTSTOR 422 1% .125W F TC=0+-100
RESTSTOR 2.2K 5% .25W FC TC=-400/+700
RESTSTOR 2.2K 5% .25W FC TC=-400/+700
RESTSTOR 1K 1% .125W F TC=0+-100
RESTSTOR 3% 5% .25W FC TC=-400/+500 | 24546
01121
01121
24546
01121 | C4-1/8T0-422R-F
C82225
C82225
C4-1/8-T01001F
C83305 | | A11R16
A11R17
A11R18
A11R19
A11R20 | 0698-0083
0683-4725
0683-4725
0683-4725
0683-1025 | 82229 | 9 | RESISTOR 1.96K 1% .125W F TC=0+-100
RESISTOR 4.7K 5% .25W FC TC=-400/+700
RESISTOR 4.7K 5% .25W FC TC=-400/+700
RESISTOR 4.7K 5% .25W FC TC=-400/+730
RESISTOR 1K 5% .25W FC TC=-400/+600 | 24546
01121
01121
01121
01121 | C4-1/8-TO-1961-F
CR4725
CB4725
CB4725
CB1075 | | | | | | | | | Table 6-3. Replaceable Parts | Reference | HP Part | С | <u> </u> | | Mfr | | |--|--|---|----------------------------|--|---|---| | Designation | Number | D | Qty | Description | Code | Mfr Part Number | | A11R21
A11R22
A11R23
A11R24
A11R25 | 9683-1025
0683-4705
0698-3558
0757-0277
9683-1055 | 9 8 8 5 | 1 2 | RESISTOR 1K 5% .25W FC TC= 400/+500
RESISTOR 47 5% .25W FC TC=-400/+500
RESISTOR 4.00K 1% .125W F TC=0+-100
RESISTOR 49.9 1% .125W F TC=0+-100
RESISTOR 1M 5% .25W FC TC=-800/+900 | 01121
01121
24546
24546
31121 | CB1025
CG4725
C4-1/8-T0-4021-F
C4-1/8-T0-4992 F
CE1055 | | A11R26
A11R27
A11R28
A11R29
A11R30 | 0683-1015
0628-3153
0683-3305
0683-4725
0683-4725 | 7
9
2
2
2 | | RESISTOR 100 5% .25W FC TC=-400/+500
RESISTOR 3.82K 1% .125W F TC=0+-100
RESISTOR 33 5% .25W FC TC=-400/+500
RESISTOR 4.7K 5% .25W FC TC=-430/+700
RESISTOR 4.7K 5% .25W FC TC=-400/+700 | 01121
24546
61121
01121
61121 | CB1615
C4=1/8=T0=3831=F
CB3385
CB4725
CB4725 | | A11R31
A11R32
A11R33
A11R34
A11R35 | 0683-4725
0683-1025
0698-3444
0757-0280
0698-3499 | 2
9
1
3
6 | 1 | RESISIOR 4.7K 5% .25W FC IC=-490/+799
RESISIOR 1K 5% .25W FC IC=-400/+606
RESISIOR 316 t% .125W F IC=9+-100
RESISIOR 1K 1% .125W F IC=0+-100
RESISIOR 40.2K 1% .125W F IC=0+-190 | 01121
01121
24546
24546
24546 | CP4725
CB1025
C4-178-FD-316R-F
C4-178-FD-1601-F
C4-178-FD-4022 F | | A11R36
A11R37
A11R38
A11R39
A11R40 | 0693-1025
0757-0280
0683-5625
3683-5625
0683-5625 | 9
3
3
3
3 | 8 | RESISTOR 1K 5% .25W FC TC=-486/+606
RESISTOR 1K 1% .125W F TC=0+-190
RESISTOR 5.6K 5% .25W FC TC=-4868/+766
RESISTOR 5.6K 5% .25W FC TC= 410/+700
RESISTOR 5.6K 5% .25W FC TC= 468/+706 | 01121
24546
01121
01121
01121 | C81025
C4 178 -T0-1001 -F
C85425
C85425
C85425 | | A11R41
A11R42
A11R43 | 0683-5625
0683-5625
0683-5625 | 3
3
3 | | RESISTOR 5.6K 5% ,25W FC TC=-400/+700
RESISTOR 5.6K 5% ,25W FC TC=-46C/+76C
RESISTOR 5.6K 5% ,25W FC TC=-400/+700 | 01121
01121
01121 | CB5A25
CB5A25
CB5A25 | | A11R44 | 0683-4725 | 5 | | RESISTOR 4.7K 5% .25W FC TC=-400/+700 | 0.0181 | C84725 | | A11R45
A11R46
A11R47
A11R48
A11R49
A11R50
A11R51
A11R52
A11R53
A11R53
A11R54 |
0683-4725
0683-4725
0690-3153
0757-0274
0683-1825
0683-1035
0683-1035
0683-5525
0683-5625
0683-5625 | 2
9
5
7
1
5
3
1
3 | 1 1 2 | RESISTOR 4.7K 5% .25W FC TC=-40.0/+70.0 RESISTOR 4.7K 5% .25W FC TC=-40.0/+70.0 RESISTOR 3.83K 1% .125W F TC=0+-10.0 RESISTOR 1.21K 1% .125W F TC=0+-10.0 RESISTOR 1.21K 1% .125W F TC=0+-10.0 RESISTOR 1.6K 5% .25W FC TC=-40.0/+70.0 RESISTOR 1M 5% .25W FC TC=-40.0/+70.0 RESISTOR 1M 5% .25W FC TC=-40.0/+70.0 RESISTOR 5.6K 5% .25W FC TC=-40.0/+50.0 RESISTOR 68 5% .25W FC TC=-40.0/+50.0 | 61121
01121
24546
24546
01121
01121
01121
01121
01121
01121
01121 | CB4725
CB4725
C4-170-T0-3031 F
C4-178-T0-1211-F
CB1825
CB1035
CB1035
CB5425
CB1035
CB635
CB635
CB605 | | A11U1
A11U2
A11U3
A11U4
A11U5 | 1826-0266
1820-1958
1826-0138
1820-1197
1820-1418 | 3
0
8
9
7 | 1
1
2
2
2
1 | IC OP AMP LOW-ORIET TO-59 PKG
IC SWITCH ANLO QUAD 14-DIP-P PKG
IC COMPARATOR OF CUAD 14 DTP P PKG
IC GATE TTL LS NAND QUAD 2-TNP
IC DODR TTL US ECD-10-DEC 4-10-10-UNE | 96645
01978
91295
01295
01295 | OP-05EJ
CD4016BC
LM337N
SNZ4LGBEN
SNZ4LS42N | | A1106
A1107
A1108
A1109
A11010 | 1826-0138
1820-1201
1820-1197
1820-0630
1820-1144 | 8
6
9
3
6 | 1 1 1 | IC COMPARATOR OF QUAD 14-DTP-P PEC
IC GATE TIL LS AND QUAD 2-LNP
IC GATE TIL LS NAND QUAD 2-LNP
IC MISC TIL
IC GATE TIL LS NOR QUAD 2-LNP | 61,295
01295
61295
04213
61225 | L 6339N
SN74L508N
SN74L586N
SC4044P
SN74L582N | | A11U11 | 1820-1238 | 3 | 1 | TO GATE THE US OR GRAD 2 HAP | 01295 | SN74LS3CN | | Allwl
Allw2
Allw3
Allw4 | 8159-0005
8159-0005
8159-0005
8159-0005 | 8
8
8 | 4 | WIRE 22W
WIRE 22W
WIRE 22W
WIRE 22W | 28480
28480
28480
28480 | | | | 1258-0141
0340-0060
04193-26511 | 4 0 | 2
4
1 | JUMPER-REMOVABLE TERMINAL-STUD SPEL-EDTHRU PRESS MIC PCBD BLANK | 988 91
28480 | 011-6839 000 209
04193-26511 | | | | | | | | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |--|--|----------------------------|-------------|--|--|--| | A12 | | | | | | 21107 (1510 | | A12
A1201
A1202
A1203
A1204
A1205 | 04193-66512
0160-3766
0160-2454
0160-3766
0160-2454
0160-3766 | 3
1
2
1
2
1 | 1 4 4 | LE BPE BOARD ASSEMBLY CAPACITOR-FXD 1000PF +-1% 100VDC MICA CAPACITOR-FXD 620PF +-1% 330VDC MICA CAPACITOR-FXD 1000PF +-1% 100VDC MICA CAPACITOR-FXD 620PF +-1% 330VDC MICA CAPACITOR-FXD 1000PF +-1% 100VDC MICA | 28480
28480
28480
28480
28480
28480 | 04193-66512
0160-3766
0160-2454
0160-3766
0160-4454
0160-3766 | | A1206
A1207
A1208
A1209
A12010 | 0160-2454
0160-3766
0160-2454
0160-4835
0160-4835 | 2 1 2 7 7 | 14 | CAPACITOR FXD 629PF +-1% 393VDC HTCA
CAPACITOR FXD 1000PF +-1% 100VDC HTCA
CAPACITOR FXD 620PF +-1% 336VDC HTCA
CAPACITOR FXD 1UF +-10% 56VDC CER
CAPACITOR FXD 1UF +-10% 59VDC CER | 26480
28480
28480
28480
28480 | 0160-2454
6160-3766
0160-2454
0160-4835
0160-4835 | | A12011
A12012
A12013
A12014
A12015 | 0160-4835
0160-4835
0160-4835
0160-4835
0160-4835 | 7 7 7 7 | | CAPACITUR-FXD .1UF +-10% 50VDC CER
CAPACITUR-FXD .1UF +-10% 50VDC CER
CAPACITUR-FXD .1UF +-10% 50VDC CER
CAPACITUR-FXD .1UF +-10% 50VDC CER
CAPACITUR-FXD .1UF +-10% 50VDC CER | 28480
28480
28480
28480
28480 | 0169 4835
0160 4835
0169-4835
0160-4835
6160-4835 | | A12016
A12017
A12018
A12019
A12020 | 0160-4835
0180-0291
0180-0291
0180-1083
0180-1083 | 7
3
3
3
3 | ?
4 | CAPACITOR-FXD .1UF + -10% 50VDC CER
CAPACITOR-FXD 1UF+-10% 35VDC TA
CAPACITOR-FXD 1UF+-10% 35VDC TA
CAPACITOR-FXD 33UF 25VDC AL
CAPACITOR-FXD 33UF 25VDC AL | 28480
56287
56869
20480
28480 | 0150-4835
150D105X9035A2
150D105X9035A2
0180-1083
0180-1083 | | A12021
A12022
A12023
A12024
A12025 | 0160-4831
0160-4831
0160-4831
0180-1083
0180-1083 | 333333 | 4 | CAPACITOR-FXD 4700PF +-10% 100VDC CEP
CAPACITOR-FXD 4700PF +-10% 100VDC CER
CAPACITOR-FXD 4700PF +-10% 100VDC CEP
CAPACITOR-FXD 33UF 25VDC AL
CAPACITOR-FXD 33UF 25VDC AL | 23480
23480
23480
23480
23480 | 0166 4831
0160-4831
0160-4831
0180-1083
0186-1083 | | A12026
A12027
A12028
A12029
A12030 | 0160-4031
0160-4835
0160-4835
0160-4835
0160-4035 | 3 7 7 7 7 | | CAPACITUR-FXD 4200PF +-10% 100VDC CER
CAPACITUR-FXD .1UF +-10% 50VDC CER
CAPACITUR-FXD .1UF +-10% 50VDC CER
CAPACITUR-FXD .1UF +-10% 50VDC CER
CAPACITUR-FXD .1UF +-10% 50VDC CER | 28480
28480
28480
28480
28480 | 0160-4831
0160-4835
0160-4835
0169-4835
0169-4835 | | A12031
A12032
A12033
A12034 | 0160-4835
0160-4835
0180-2951
0180-2951 | 7766 | 5 | CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD 33UF+-20% 16VDC AL
CAPACITOR-FXD 32UF+-20% 16VDC AL | 23480
28480
28480
28480 | 0160-4835
0160-4835
0183-2751
0180-2951 | | A12L1
A12L2
A12L3
A12L4
A12L5 | 9140-0129
9140-0129
9100-2259
9100-2259
9100-2259 | 1
1
8
8
8 | 4 | TNDUCTOR RE-CH-MLD 220UH 5% .165DX.385LG INDUCTOR RE-CH-MLD 220UH 5% .166DX.385LG INDUCTOR RE-CH-MLD 1.5UH 10% .1050X.26LG INDUCTOR RE-CH-MLD 1.5UH 10% .1050X.26LG INDUCTOR RE-CH-MLD 1.5UH 10% .105DX.26LG | 28480
28480
28480
28480
28480 | 9146-0129
9140-0129
9166-2259
9100-2259
9100-2259 | | A12L6
A12L7
A12L8 | 5140-0129
5140-0129
9100-2259 | 1 1 3 | | TNDUCTOR REHCHHMID 220UH 5% .166DX.355UG
INDUCTOR REHCHHMID 220UH 5% .164DX.385UG
INDUCTOR REHCHHMID 1.5UH 10% .105DX.26UG | 두8480
23480
28480 | 9140-0129
9146-0129
9100-2259 | | A12Q1
A12Q2
A12Q3
A12Q4 | 1853-0314
1853-0281
1854-0637
1854-0477 | 9 1 7 | 1
1
1 | TRANSISTOR PNP 2N2205A ST TO:39 PD=600M4
TRANSISTOR PNP 2N2207A ST TO:18 PD=430M4
TRANSISTOR NPN 2N2219A ST TO:5 PD=800M4
TRANSISTOR NPN 2N2222A ST TO:18 PD=530M4 | 04713
04713
01293
04713 | 2N2705A
2N2907A
2N2219A
2N2222A | | A12R1
A12R2
A12R3
A12R4
A12R5 | 0698-3136
0698-8004
2100-3207
2100-3123
0698-8833 | 8
9
1
0
2 | 2
2
2 | RESISTOR 17.8K 1% .125M F TC=0+-100
RESISTOR 200K .1% .1M F TC=0+-15
RESISTOR-TRMR 5K 10% C STDE-ADJ 1-TPN
RESISTOR-TRMR 500 10% C SIDE-ADJ 17 TRN
RESISTOR-FXD 10K OHM 0.1% | 24546
07716
20480
02111
20480 | C4 1/8-T6-1702-F
FAR-1/10-T13-2003-B
210C-3207
43P501
6698-8833 | | A12R6
A12R7
A12RB
A12R9
A12R10 | 0678-3460
0698-8033
0683-2215
0698-3136
0698-8004 | 1
2
1
8
9 | 5
5 | RESISTOR 420K 1% .185W F TC≔0+~130
RESISTOR~FXD 16K 0HM 0.1%
RESISTOR 220 5% .25W FC TC=-430Z+630
RESISTOR 17.6K 1% .125W F TC=0+~160
RESISTOR 230K .1% .1W F TC=0+~15 | 28480
28480
01121
24546
07716 | 3698-3460
6698-8833
682215
64-178-16-1282-F
MAR-1710-T10-2033-B | | A12R11
A10R12
A12R13
A12R14
A12R15 | 2100-3207
2100-3123
0698-8833
0698-3460
0698-8833 | 1
0
2
1
2 | | RESISTOR-TRMR 5% 10% C SIDE-ADJ 1-TRN
RESISTOR-TRMR 590 10% C SIDE-ADJ 17-TRN
RESISTOR-FXD 10% OHM 0.1%
RESISTOR 42% 1% 1.5% F IC=0+-1JD
RESISTOR-FXD 10% OHM 0.1% | 28480
92111
28480
28480
28480 | 2100-3207
438501
6690-8833
0698-3460
6693-8833 | | A12R16
A12R17
A12R18
A12R19
A12R20 | 0.693-2215
0.698-8833
0.698-6833
0.698-8833
0.698-8833 | 1 2 2 2 2 | | RESTSTOR 220 5% .25W FC TC=-400/+690
RESTSTOR-FXD 10K OHM 0.1%
RESTSTOR-FXD 19K OHM 0.1%
RESTSTOR-FXD 10K OHM 0.1%
RESTSTOR-FXD 10K OHM 0.1% | 01121
28430
28480
28480
28480 | CR215
0498-8833
0498-8833
6493-8933
9458-8933 | | A12R21
A10R22
A12R23
A10R24
A12R25 | 0757-0280
0757-0438
0757-0438
0757-0280
0757-0280 | 3
3
3
3
3 | 4 | RESISTOR 1K 1% .125W F TC=9+-100 RESISTOR 5.11K 1% .125W F TC=9+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=6+-100 | 24546
24546
24546
24546
24546 | C4-1/8-T0-10C1-F
C4-1/8-T0-5111-F
C4-1/8-T0-5111-F
C4-1/8-T0-1001-F
C4-1/8-T0-10C1-F | | | | | | | | | Table 6-3. Replaceable Parts | | | | | Table 6-3. Replaceable Parts | | | |--|---|-----------------------|-------------|--|---|---| | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | | A12R26
A12R27
A12R28
A12R29
A12R30 | 0757-0438
0757-0438
0757-0280
0767-0280
0683-1035 | 3
3
1
1 | 2 | RESISTOR 5.11K 1% .125W F TC=0+-10C
RESISTOR 5.11K 1% .125W F
TC=0+-110
RESISTOR 1K 1% .125W F TC=0++10C
RESISTOR 10K 5% .25W FC TC=-430/+730
RESISTOR 10K 5% .25W FC TC=-400/+70C | 24546
24546
24546
01121
01121 | C4-1/8-T0-5111-F
C4-1/8-T0-5111-F
C4-1/8-T0-1001-F
CB1035
CB1035 | | A12R31
A12R32
A12R33
A12R34
A12R35 | 0698-3620
0698-3226
0698-3498
0698-3498
0698-3226 | 5
7
5
5
7 | 5
5
5 | RESISTOR 100 5% 2W KO TC=0+-200
RESISTOR 6.49K 1% .125W F TC=0+-100
RESISTOR 8.66K 1% .125W F TC=0+-100
RESISTOR 8.66K 1% .125W F TC=0+-100
RESISTOR 8.66K 1% .125W F TC=0+-100 | 28480
24546
24546
24546
24546 | 0698-3620
C4-1/8-T0-6491-F
C4-1/8-T0-866R-F
C4-1/8-T0-866R-F
C4-1/8-T0-6491-F | | A12R36 | 0698-3620 | 5 | | RESISTOR 108 5% 2W MO TC=0+-200 | 28480 | 0698-3620 | | A12U1
A12U2
A12U3
A12U4
A12U5 | 1826-0081
1826-0081
1826-0081
1826-0081
1826-0081 | 0
0
0
0 | 6 | TC UP AMP WB TO-99 PKG TC OP AMP WB TO-99 PKG TC UP AMP WB TO-99 PKG TC OP AMP WB TO-99 PKG TC OP AMP WB TO-99 PKG TC OP AMP WB TO-99 PKG | 27014
27014
27014
27014
27014 | LH318H
LH318H
LH318H
LH318H
LH318H | | A1206
A1207
A1208
A1209
A12010 | 1826-0081
1826-0521
1820-1958
1820-1958
1826-0521 | 0
3
0
0
3 | 5 | IC OP AMP WB TO-99 PKG IC OP AMP DUAL B-DIP-P PKG IC SWITCH ANLG GUAD 14-DIP-P PKG IC SWITCH ANLG GUAD 14-DIP-P PKG IC OP AMP DUAL B-DIP-P PKG | 27014
01295
01928
01928
01295 | LM318H
TL072CP
C04616BE
CD4016BE
TL072CP | | | 1205-0050 | 7 | 2 | HEAT SINK TO-5/TO-39-CS | 28480 | 1205-0050 | | | 04193-26512 | 0 | 1 | PCBD BLANK | 28480 | 04193-26512 | \perp | | | 1 | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |--|--|-----------------------|-------------------|--|--|---| | A13 | | | | DETELTOR ECARD ASSCHELY | 28480 | 34193-66513 | | A13
A13C1
A13C2
A13C3
A13C4
A13C5 | 04193-66513
0186-0116
0160-4835
0160-2208
0160-2208
0160-4835 | 1 7 4 4 7 | 1
1
20
2 | CAPACITOR-FXD 6.80F+-10% 35VDC TA
CAPACITOR-FXD .10F +-10% 35VDC CFR
CAPACITOR-FXD 330PF +-5% 360VDC MICA
CAPACITOR-FXD 330PF +-5% 360VDC MICA
CAPACITOR-FXD .10F +-10% 56VDC CER | 56287
28480
28480
28480
28480
28480 | 1500485X9035D2
0160-4835
0160-2208
0160-2208
0160-4835 | | A1306
A1307
A1308
A1309
A13010 | 0160-4835
0160-4935
0160-4835
0180-2951
0180-2951 | 7
7
7
6
6 | 7 | CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .33UF+-20% 16VDC AL
CAPACITOR-FXD .33UF+ .20% 16VDC AL | 28480
28480
28480
28480
28480 | 0160-4835
0160-4835
0160-4835
0180-2951
0180-2951 | | A13011
A13012
A13013
A13014
A13015 | 0166-4833
0160-4535
0160-2201
0180-1083
0180-1083 | 5
4
7
3
3 | 1
5
1
2 | CAPACTIOR-FXD .022UF +-10% 100VDC CER
CAPACTIOR-FXD 1UF +-10% 50VDC FER
CAPACTIOR-FXD 51PF +-5% 30CVDC MICA
CAPACTIOR-FXD 32UF 25VDC AL
CAPACTIOR-FXD 33UF 25VDC AL | 28480
28480
28480
28480
28480 | 0160-4833
0160-4535
0169-2201
0180-1083
0180-1083 | | A13016
A13017
A13018
A13019
A13020 | 0160~4535
0160~4935
0160~4835
0160~4535
0160~4935 | 4
7
7
4
7 | | CAPACITOR-FXD 1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD 1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER | 28480
28480
28480
28480
28480 | 0160-4535
0160-4875
0160-4835
0160-4535
0160-4635 | | A13021
A13022
A13023
A13024
A13025 | 0160-4935
0160-4935
0160-4935
0180-2951
0160-4935 | 7
7
7
6
7 | | CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UC +-10% 50VDC CER
CAPACITOR-FXD 33UF+-20% 10VDC AL
CAPACITOR-FXD .1UF +-10% 50VDC CER | 28 480
28 480
26 480
28 480
28 480 | 0160-4835
0163-4835
0160-4835
0180-2951
0160-4835 | | A13026
A13027
A13028
A13029
A13030 | 0160-4835
0160-4835
0160-4835
0160-4834
0160-4834 | 7
7
7
6
6 | 4 | CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CEP
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .047UF +-10% 100VDC CER
CAPACITOR-FXD .047UF +-10% 100VDC CER | 28480
28480
28480
28480
28480 | 0160-4835
0160-4835
0160-4835
0160-4834
0160-4834 | | A13031
A13032
A13033
A13034
A13035 | 0180-2951
0180-2951
0180-2951
0180-2951
0140-0178 | 6
6
6
7 | 1 | CAPACITOR FXD 33UF+-20% 16VDC AU
CAPACITOR-FXD 33UF+-20% 16VDC AU
CAPACITOR-FXD 33UF+-20% 16VDC AU
CAPACITOR-FXD 32UF+-20% 16VDC AU
CAPACITOR-FXD 560PF +-2% 300VDC MICA | 28480
28480
28480
28480
28480
72136 | 0180-2951
0180-2951
0180-2951
0180-2951
DM15656100300WV1CR | | A13036
A13037
A13038
A13039
A13040 | 0160-4535
0160-4535
0160-4835
0160-4834
0160-4834 | 4 7 6 6 | | CAPACITOR-EXD 1UF +-10% 50VDC CER
CAPACITOR-FXD 1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .047UF +-10% 100VDC CER
CAPACITOR-FXD .047UF +-10% 100VDC CER | 28480
28480
28480
28480
28480 | 0160-4535
0160-4535
0160-4635
0160-4834
0160-4834 | | A13041
A13042
A13043
A13044 | 0160-4935
0160-4935
0160-4935
0160-4935 | 7 7 7 7 | | CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CEP
CAPACITOR-FXD .1UF +-10% 50VDC CER | 28480
28480
28480
28480 | 0160-4835
0160-4835
0160-4835
0160-4835 | | A13CR1
A13CR2
A13CR3
A13CR4
A13CR5 | 1901-0040
1901-0040
1902-0064
1901-0040
1962-0049 | 1 1 1 2 | 9
3
1 | DIODE-SWITCHING 30V 58MA 2NS DO-35
DIODE-SWITCHING 30V 58MA 2NS DO-35
DIODE-ZNR 7.5V 5% DO-35 PD=,4W TC=+,05%
DIODE-SWITCHING 39V 50MA 2NS DO-35
DIODE-ZNR 6.19V 5% DO-35 PD=,4W | 28480
28480
28480
28480
28480 | 19010640
19010040
19070064
19070049 | | A13CR6
A13CR7
A13CR8
A13CR9
A13CR10 | 1201-0040
1901-0040
1202-0064
1902-0064
1201-0040 | 1
1
1
1 | | DIGOE-SWITCHING 30V 59MA 2NS DO-35
DIGOE-SWITCHING 36V 50MA 2NS DO-35
DIGOE-2NR 7.5V 5% DO-35 PD=.4W TC=+.05%
DIGOE-ZNR 7.5V 5% DO-35 PD=.4W TC=+.05%
DIGOE-SWITCHING 30V 50MA 2NS DO-35 | 28480
28480
28480
28480
28480 | 1201-0040
1901-0040
1902-0064
1902-0064
1201-0040 | | A13CR11
A13CR12
A13CR13 | 1961-0040
1901-0040
1961-0040 | 1
1
1 | | DIODE-SWITCHING 30V 56MA 2NS DO-35
DIODE-SWITCHING 30V 50MA 2NS DO-35
DIODE-SWITCHING 30V 50MA 2NS DO-35 | 28480
28480
28480 | 1901-0040
1901-0040
1901-0040 | | A13J1 | 1251-4822 | 6 | 1 | CONNECTOR 3-PIN M POST TYPE | 28480 | 1251-4622 | | A13L1
A13L2
A13L3
A13L4
A13L5 | 9140-0114
9140-0114
9140-0129
9140-0129
9140-0129 | 4
4
1
1 | ?
6 | INDUCTOR RE-CH-HLD 10UH 16% .166DX.393LC
INDUCTOR RE-CH-HLD 10UH 10% .166DX.385LC
INDUCTOR RE-CH-HLD 220UH 5% .166DX.393LG
INDUCTOR RE-CH-HLD 220UH 5% .166DX.365LG
INDUCTOR RE-CH-HLD 220UH 5% .166DX.365LG | 28480
58480
28480
28480
28480 | 9140-0114
9140-0114
9140-0129
9140-0129
9140-0129 | | A13U6
A13U7
A13U8 | 9140-0129
9140-0129
9140-0129 | 1 1 1 | | INDUCTOR RE-CH-MUD 2200H 5% .1460%.355UG
INDUCTOR RE-CH-MUD 2200H 5% .1660%.385UG
INDUCTOR RE-CH-MUD 2200H 5% .1460%.355UG | 28480
28480
28480 | 9140-3129
9140-0129
9140-3129 | | A13R1
A13R2
A13R3
A13R4
A13R5 | 2100-3352
0757-0442
0757-0279
0698-3160
0698-3160 | 7
9
0
8 | 1
8
2
2 | RESISTOR-TRMR 1K 10% C SIDE-ADJ 1-TRN
RESISTOR 10K 1% .125W F TC=0+-100
RESISTOR 3.16K 1% .125W F TC=0+-100
RESISTOR 31.6K 1% .125W F TC=0+-100
RESISTOR 31.6K 1% .125W F TC=0+-100 | 28480
24546
24546
24546
24546 | 2100-3352
C4-1/8-T3-1002-F
C4-1/8-T0-3161-F
C4-1/8-T3-3162-F
C4-1/8-T0-3162-F | | | | | | | | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |---|--|--|---------------------------------|--|---|--| | A13R6
A13R7
A13R8
A13R9
A13R10 |
0698-3279
0757-0424
0757-0424
0698-3155
0757-0442 | 0
7
7
1
9 | 1
2
5 | RESISTOR 4.99% 1% .125W F TC=0+-100
RESISTOR 1.1K 1% .125W F FC=0+-130
RESISTOR 1.1K 1% .125W F TC=0+-100
RESISTOR 4.64K 1% .125W F TC=0+-130
RESISTOR 4.64K 1% .125W F TC=0+-100 | 24546
24546
24546
24546
24546
24546 | C4-1/8-T0-4971-F
C4-1/8-T0-1101-F
C4-1/8-T0-1101-F
C4-1/8-T0-101-F
C4-1/8-T0-1002-F | | A13R11
A13R12
A13R13
A13R14
A13R15 | 0698-0083
0757-0465
0683-1535
0698-3155
0698-3359 | 8
6
6
1
7 | 1
1
1 | RESISTOR 1.96K 1% .125W F TC=0+-100
RESISTOR 100K 1% .125W F TC=0+-100
RESISTOR 15K 5% .25W FC TC=-400/4800
RESISTOR 4.64K 1% .125W F TC=0+-100
RESISTOR 12.7K 1% .125W F TC=0+-100 | 24546
24546
01121
24546
24546 | C4-1/8-TC-1961-F
C4-1/8-TC-10C3-F
C81535
C4-1/8-TC-4641-F
C4-1/8-TC-1272-F | | AT3R16
AT3R17
AT3R18
AT3R19
AT3R20 | 0698-3155
0698-3162
0693-1035
1810-0205
0698-3162 | 1
1
7
6 | .3
4
3 | RESISTOR 4.64k 12125W F TC=0+-100
RESISTOR 46.4k 12125W F TC=0+-100
RESISTOR 10k 5225W FC TC=-4007+700
NETWORK-RES 0-5124.7K GBH X 7
RESISTOR 46.4k 12125W F TC=0+-100 | 24546
24546
01121
01121
24546 | C4-1/8-T0-4641-F
C4-1/8-T1-4642-F
C81035
2086472
C4-1/8-T0-4642-F | | A13R21
A13R22
A13R23
A13R24
A13R25 | 0757-0279
0698-3162
1610-0205
0683-6815
0683-6815 | 0
0
7
5 | 4 | RESISIOR 3.16K 1% .125W F TC=0+-130
PESTSIOR 46.4K 1% .125W F TC=0+-100
NETWORK RES 8-51P4.7K 0RM % 7
RESISIOR 680 5% .25W FC TC=-400Z+600
RESISIOR 680 5% .25W FC TC=-400Z+600 | 24546
24546
01121
01121
01121 | C4-1/8-T0-3161-F
C4-1/8-T0-4642-F
20EA472
C86815
C86815 | | A13R26
A13R27
A13R28
A13R29
A13R30 | 0683-6815
0683-6815
0683-1035
0683-1025
0693-1025 | 5
5
1
9 | 9 | RESISTOR 680 5% .25W FC TC=-4007+600
RESISTOR 680 5% .25W FC TC=-4007+600
RESISTOR 10K 5% .25W FC TC=-4007+700
RESISTOR 1K 5% .25W FC TC=-4007+600
RESISTOR 1K 5% .25W FC TC=-4007+600 | 61121
01121
01121
01121
01121 | CBA915
CBA915
CB1035
CB1025
CB1025 | | A13R31
A13R32
A13R33
A13R34
A13R35 | 0693-1045
0683-1025
0683-1025
0757-0442
0698-4431 | 3
9
9
9 | 2 | RESTSTOR 130K 5% ,25W FC TC=-480/+800
RESTSTOR 1K 5% ,25W FC TC=-400/+600
RESTSTOR 1K 5% ,25W FC TC=-400/+630
RESTSTOR 19K 1% ,125W F TC=9+-130
RESTSTOR 2.05K 1% ,125W F TC=0+-100 | 01121
01121
91121
24546
24546 | CB1045
CB1025
CB1025
C4-1/8-T0-1002-F
C4-1/8-T0-2051-F | | A13R36
A13R37
A13R38
A13R39
A13R40 | 0698-4431
0683-1045
0683-1025
0683-1025
0683-1025 | 8
3
9
9 | | RESISTOR 2.05K 1% .125W F TC=0+-100
RESISTOR 199K 5% .25W FC TC=-400/+800
RESISTOR 1K 5% .25W FC TC=-400/+600
RESISTOR 1K 5% .25W FC TC=-400/+600
RESISTOR 1K 5% .25W FC TC=-400/+600 | 24546
01121
01121
01121
01121 | C4-1/8-T0-2051-F
CB1045
CB1025
CB1025
CB1025 | | 613841
613842
613843
613844
613845 | 0757-0280
0698-3155
0683-1035
1810-0205
0683-1825 | 3
1
1
7
7 | 2 | RESISTOR 1K 1% .125W F TC=0+-100
RESISTOR 4.64K 1% .125W F TC=0+-100
RESISTOR 10K 5% .25W FC TC=-410/+200
NETWORK-RES 8-51P4.7K 0-HM X 7
RESISTOR 1.6K 5% .25W FC 1C=-400/+700 | 24546
24546
01121
01121
01121 | C4-1/8-T0-1001-F
C4-1/8-T0-4641-F:
CB1035
208A472
CB1825 | | AL3R46
A13R47
A13R48
A13R49
A13R50 | 0757-0280
0698-3155
0757-0442
9757-0442
0757-0442 | 3
1
9
9 | | RESISTOR 1K 1% .125W F TC=0+-100
RESISTOR 4.64K 1% .125W F TC=0+-130
RESISTOR 10K 1% .125W F TC=0+-100
RESISTOR 10K 1% .125W F TC=0+-130
RESISTOR 10K 1% .125W F TC=0+-100 | 24546
24546
24546
24546
24546
24546 | C4-1/8-T0-10C1-F
C4-1/8-T0-4641-F
C4-1/8-T0-1082-F
C4-1/8-T0-1092-F
C4-1/8-T0-1082-F | | A13851
A13852
A13853
A13854
A13855 | 3757-0290
0683-1025
0683-1025
0683-1035
9757-0442 | 5
9
1
9 | 1 | PESTSTOR 6.15K 1% .125W F TC=0+-100
RESISTOR 1K 5% .25W FC TC=-4007+600
PESTSTOR 1K 5% .25W FC TC=-4007+600
RESISTOR 1OK 5% .25W FC TC=-4007+700
RESISTOR 10K 1% .125W F TC=0+-100 | 19701
01121
01121
01121
01121
24546 | MF401/8-T0-6191 F
CB1025
CB1025
CB1035
CB-1/8-T0-1002-F | | A13R56 | 0757-0442 | 9 | | RESISTOR 16K 1% .125W F TC=6+-100 | 24546 | C4-1/8-T0-1002-F | | A1301
A1302
A1303
A1304
A1305
A1306
A1307
A1308
A1309
A13010
A13010 | 1626-0521
1826-0685
1826-0138
1820-1356
1826-0138
1826-0229
1826-0695
1826-0521
1826-0175
1826-0177 | 3
0
8
2
8
8
0
3
5
0 | 2
3
2
1
1
1
1 | TO UP AMP DUAL 8-DIP-P PKG TO 02 AMP LOW-BLAS-H-IMPD TO-92 PKG TO 02 AMP LOW-BLAS-H-IMPD TO-92 PKG TO HV CMOS MONOSTBL RETRIC/RESET DUAL TO COMPARATOR OF RUAD 14-DIP-P PKG TO 07 AMP LOW-DRIFT TO-99 PKG TO 07 AMP LOW-BTAS-H-IMPD TO-92 PKG TO 02 AMP LUAL 8-DIP-P PKG TO COMPARATOR OF DUAL 14-DIP-P PKG TO COMPARATOR OF DUAL 14-DIP-P PKG TO COMPARATOR OF DUAL 14-DIP-P PKG TO GATE CMOS NAND GUAD 2-IMP TO GATE CMOS EXCL-02 QUAD 2-IMP | 01255
27014
01255
04713
01255
06665
27014
01255
27014
04713
01928 | TI 072CP
LF351H
LH339N
M014528RCP
LM339N
OP-05CJ
LF351H
TL072CP
LM319N
M014011BCP
C04070BE | | A13012
A13013
A13014
A13015
A13016 | 1626-3665
1826-0081
1826-3532
1826-3502
1826-3502 | 0
0
0
0 | 1
3 | TO UP AMP LOW-BLAS-H-TMPD 10-59 PKG TO DE AME WB TO-99 PKG TO SWITCH ANLG QUAD 14-DIP-P PKG TO SWITCH ANLG QUAD 14-DIP-P PKG TO SWITCH ANLG QUAD 14-DIP-P PKG | 27914
27614
04713
04713
04713 | LF351H
LM318H
MC14066BCP
MC14066BCP
MC14066ECP | | | 1258-0141 | | 1 | JUMPER-REMOVABLE | | 1005 0050 | | | 1205-0050
04193-26513 | 0 | 1 | HEAT SINK TO-5/TO-39-CS PCBD BLANK | 28480 | 1205-0050
04193-26513 | | | | | | | | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |--|---|------------------|------------------|--|---|--| | A14 | | | | | | | | A14 | 04193-66514 | 5 | 1 | ADC EGARD ASSEMBLY | 28480 | 34173-66514 | | A1401
A1402
A1403
A1404
A1405 | 0160-0127
0160-0127
0180-1083
0160-0889
0160-0303 | 2 3 3 6 | 2
1
2
2 | CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 33UF 25VDC AI CAPACITOR-FXD .33UF +-10% 80VDC POLYE CAPACITOR-FXD .15UF +-10% 200VDC POLYE | 28480
28480
28480
28480
28480 | 0169-0127
0160-0127
0180-11083
0160-0569
0160-0303 | | A1406
A1407
A1408
A1409
A14010 | 0160-0303
0160-0839
0160-4822
0160-4822
0160-3901 | 63226 | 5 | CAPACITOR-FXD .150F +-10% 200VDC POLITE
CAPACITOR-FXD .330F +-10% 80VDC POLITE
CAPACITOR-FXD 1000PF +-5% 100VDC CFR
CAPACITOR-FXD 1000PF +-5% 100VDC CEP
CAPACITOR-FXD 2.20F +-20% 25VDC CER | 28480
28480
28480
28480
28480 | 0160-0303
0160-0837
0160-4822
0160-4822
0160-3901 | | A14C11
A14C12 | 0160-3901
0160-4835 | 6
7 | 1 | CAPACITOR-FXD 2.2UF +-20% 25VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER | 28480
28480 | 0160-3901
0160-4835 | | A14J1
A14J2 | 1200-0654
1200-0654 | 7 7 | z | SOCKETHIC 40-CONT DIP DIPHSLDR
SOCKETHIC 40-CONT DIP DIPHSLDR | 28480
28480 | 1200-0654
1200-0654 | | A14Q1 | 1854-0477 | 7 | 1 | TRANSISTOR NPN 2N2222A ST TO-18 PD=50CMW | 64713 | 2N2222A | | A14R1
A14R2
A14R3
A14R4
A14R5 | 0683-1045
0683-1045
0683-2225
0757-0274
0757-0280 | 33353 | 2
1
1
1 | RESISTOR 100K 5% .25W FC TC=-400/+800
RESISTOR 100K 5% .25W FC TC=-400/+800
RESISTOR 2.2K 5% .25W FC TC=-400/+700
RESISTOR 1.21K 1% .125W F TC=0+-100
RESISTOR 1K 1% .125W F TC=0+-100 | 01121
01121
01121
24546
24546 | CB1045
CB1045
CB2225
C4-178-T0-1211-F
C4-178-T0-1001-F | | A14R6
A14R7
A14R8
A14R9 | 0683-4715
0683-4715
0683-4725
0683-3315 | 0 0 2 4 | 2
1
1 | RESISTOR 470 5% .25W FC TC=-4007+600 RESISTOR 470 5% .25W FC TC=-4007+600 RESISTOR 4.7K 5% .25W FC TC=-4007+700 RESISTOR 330 5% .25W FC TC=-4007+600 | 01121
01121
01121
01121 | CB4715
CB4715
CB4725
CB3315 | | A14U1
A14U2
A14U3
A14U4
A14U5 | 1820-1197
1820-1112
1826-0746
1826-0746
1826-1199 | 9
B | 1
3
2
1 | IC GATE TTL LS NAND QJAD 2 INP IC FF TTL LS D-TTPE PGS FDGE-TRTG IC A/D CONVERTER CMOS 40-DIP-P PKG IC A/D CONVERTER CMOS 40-DIP-P PKG IC INV TTL LS HEX 1-INP | 01275
01275
28490
28480
01225 | SN74LSCCN
SN74LS74AN
1826-0746
1826-0746
SN74LSC4N | | A1 4U6
A1 4U7
A1 4UB
A1 4U9
A1 4U1 0 | 1820-2024
1820-1216
1820-1204
1820-1112
1820-1112 | 3
3
9
8 | 1
1
1 | IC DRVR ITL LS LINE DRVR OCTL IC DCDR TTL LS 3-TO-8-LINE 3-INP IC GATE TIL LS NAND DUAL 4-INP IC FF TTL LS D-TYPE POS-EDGE-TRIC IC FF TIL LS D-TYPE POS-EDGE-TRIG | 01295
01295
01295
01295
01295 | SN24LS244N
SN24LS138N
SN24LS20N
SN24LS24AN
SN24LS24AN | | A14U11
A14U12 | 1820-1432
1820-1432 | 5 5 | 5 | IC ONTRITTL AS BIN SYNCHRO POSHEDGE-TRIG
IC ONTRITTL AS BIN SYNCHRO POSHEDGE-TRIG | 01275
01295 | SN74LS163AN
SN74LS163AN | | | 04193-26514 | 0 | 1 | PCBD BLANK | 28480 |
04193-26514 | | | | | | | | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |--|--|-----------------------|------------------|---|---|---| | A15 | | | | | | | | A15 | 0419366515 | 6 | 1 | ANALOG CUTPUT BOARD ASSEMBLY | 28480 | 04193-66515 | | A1501
A1502
A1503
A1504
A1505 | 0140-0208
0140-0208
0140-0208
0140-0208
0140-0208 | 8
8
8
8 | 6 | CAPACITOR-FXD 680PF +-5% 300VDC MICA
CAPACITOR-FXD 680PF +-5% 300VDC MICA
CAPACITOR-FXD 690PF +-5% 300VDC MICA
CAPACITOR-FXD 680PF +-5% 300VDC MICA
CAPACITOR-FXD 680PF +-5% 300VDC MICA | 28480
28480
72136
72136
28480 | 0140-0208
0140-0208
DM15F681J0300WV1CR
DM15F681J0300WV1CR
0140-0208 | | A1504
A1507
A1508
A1509
A15010 | 0140-0208
0160-0127
0160-0127
0160-0127
0160-4835 | 8 2 2 2 7 | 6
3 | CAPACITOR-FXD 680PF +-5% 300VDC MICA
CAPACITOR-FXD 1UF +-20% 25VDC CER
CAPACITOR-FXD 1UF +-20% 25VDC CER
CAPACITOR-FXD 1UF +-20% 25VDC CER
CAPACITOR-FXD 1UF +-10% 50VDC CER | 28480
28480
28480
28480
28480 | 0140-0208
0160-0127
0160-0127
0160-0127
0160-4835 | | A15011
A15012
A15013
A15014
A15015 | 0160-4835
0160-4835
0180-1083
0160-0127
0180-1083 | 77323 | 5 | CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD .1UF +-10% 50VDC CER
CAPACITOR-FXD 33UF 25VDC AL
CAPACITOR-FXD 1UF +-20% 25VDC CER
CAPACITOR-FXD 33UF 25VDC AL. | 28480
29480
28480
28480
28480 | 0160-4835
0160-4835
0180-1083
0160-0127
0180-1083 | | A15016
A15017
A15018
A15019
A15020 | 0180-1083
0160-0127
0180-1083
0160-0127
0180-1083 | 32323 | | CAPACITOR-FXD 33UF 25VDC AL
CAPACITOR-FXD 1UF +-28% 25VDC CER
CAPACITOR-FXD 33UF 25VDC AL
CAPACITOR-FXD 1UF +-20% 25VDC CER
CAPACITOR-FXD 33UF 25VDC AL | 28480
28480
28480
28480
28480 | 0180-1083
0160-0127
0160-1083
0160-0127
0180-1183 | | A15L1
A15L2 | 9140-0210
9140-0210 | 1 | 5 | INDUCTOR RE-CH-MED 100UH 5% .166DX.385LG
INDUCTOR RE-CH-MED 100UH 5% .166DX.385LG | 28480
28480 | 9140-0210
9140-0210 | | A15R1
A15R2
A15R3
A15R4
A15R5 | 2100-3273
2100-3273
2100-3273
3100-3273
3683-4725
0683-1025 | 1
1
1
2
9 | 3
6 | RESISTOR-TRMR 2K 10% C SIDE-ADJ 1-TRN
RESISTOR-TRMR 2K 10% C SIDE-ADJ 1-TRN
RESISTOR-TRMR 2K 10% C SIDE-ADJ 1-TRN
RESISTOR 4.7K 5% .25W FC TC=-490/+700
RESISTOR 1K 5% .25W FC TC=-400/+600 | 28480
28480
28480
01121
01121 | 2100-3273
2100-3273
2100-3273
CB4725
CB4725 | | A15R6
A15R7
A15R8
A15R9
A15R10 | 0683-2235
0683-1025
0683-2235
0683-1025
0683-2235 | 5 9 5 9 5 | 3 | RESISTOR 22K 5% .25W FC TC=-490/+800
RESISTOR 1K 5% .25W FC TC=-400/+600
RESISTOR 22K 5% .25W FC TC=-400/+800
RESISTOR 1K 5% .25W FC TC=-400/+600
RESISTOR 22K 5% .25W FC TC=-400/+800 | 01121
01121
01121
01121
01121 | CB2235
CB1625
CB1025
CB1025
CB2235 | | A15R11
A15R12
A15R13
A15R14
A15R15 | 0693-4725
0683-2735
0683-2735
0683-2735
0683-4725
1810-0279 | 2 0 2 5 | 2 | RESISTOR 4.7K 5% .25W FC TC=-400/+700
RESISTOR 27K 5% .25W FC TC=-400/+800
RESISTOR 27K 5% .25W FC TC=-400/+800
RESISTOR 4.7K 5% .25W FC TC=-400/+700
NETWORK-RES 10-SIP4.7K OHM X 9 | 01121
01121
01121
01121
01121 | CB4725
CB2735
CB2735
CB4725
210A472 | | A15R16
A15R17
A15R18
A15R19 | 1810-0279
0683-1625
0683-1025
0683-1025 | 5
9
9 | | NETWORK-RES 10-S1P4.7K OHN X 9
RESISTOR 1K 5% .25W FC TC=-400/+600
RESISTOR 1K 5% .25W FC TC=-400/+600
RESISTOR 1K 5% .25W FC TC=-400/+600 | 01121
01121
01121
01121 | 210A472
CB1025
CB1025
CB1025 | | A1501
A1502
A1503
A1504
A1505 | 1820-1278
1820-1278
1820-1179
1820-1164
1820-1112 | 7
7
1
9
8 | 2
2
1 | IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC INV TIL LS HEX 1-INP IC GATE TTL LS NAND DUAL 4-INP IC FF TIL LS D-TYPE POS-EDGE-TRIG | 01295
01295
01295
01295
01295 | SN74LS191N
SN74LS191N
SN74LS04N
SN74LS04N
SN74LS24N | | A1506
A1507
A1508
A1509
A15010 | 1820-1204
1820-1423
1820-1197
1820-1216
1820-1144 | 9
4
9
3
6 | 1
1
1
1 | IC GATE TTULS NAND DUAL 4-INP TO MY TIL ES PONOSTBL RETRIG DUAL IC GATE TTULS NAND QUAD 2-INP TO DOOR ITULES 3-TO-B-LINE 3-INP TO GATE TTULS NOR QUAD 2-INP | 01295
01295
01295
01295
01295 | SN74LS20N
SN74LS123N
SN74LS00N
SN74LS13BN
SN74LS02N | | A15011
A15012
A15013
A15014
A15015 | 1813-0105
1820-1374
1820-1179
1820-2024
1820-1436 | 2
4
1
3
9 | 1
1
1
3 | IC D/A CONVERTER 24-DIP-CER PKG IC SWITCH ANLG QUAD 16-DIP-P PKG IC INV TIL LS HEX 1-INP IC DRVR TIL LS LINE DRVR CCTL IC TIL LS 16-BLT RAH STAT 45-NS 0-C | 8E175
24355
01295
01295
01295 | DACBO-CBT-V
AD7510DIJN
SN74LS04N
SN74LS04N
SN74LS170N | | AT5016
A15017
A15018
A15019 | 1820-1436
1820-1436
1826-6410
1826-0410 | 9
9
9 | 2 | IC TTL LS 16-BIT RAM STAT 45-NS 0-C
IC TTL LS 16-BIT RAM STAT 45-NS 0-C
IC OP AMP LOW-BIAS-H-IMPD QJAD 14-DIP-P
IC OP AMP LOW-BJAS-H-IMPD QUAD 14-DIP-P | 01295
01295
01295
01295 | SN74LS170N
SN74LS170N
TL094CN
TL084CN | | A15J1 | 1200-0541 | 1 | 1 | SOCKET-IC 24-CONT DIP DIP-SLDR | 28480 | 1200-0541 | | | 04193-26515 | 0 | 1 | PCBD BLANK | 28480 | 04193-26515 | | | | | | | | | Table 6-3. Replaceable Parts | | Table 0-3. Replaceable rails | | | | | | | | | |--------------------------|---|--------|----------|---|-------------------------|-------------------------------------|--|--|--| | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | | | | | A16 | | | | | | | | | | | A16 | 04193-66516 | 7 | 1 | HP-18 BOARD ASSEMBLY | 28480 | 04193-66516 | | | | | A1601
A1602 | 0160-0127
0180-1083 | 3 | 1
1 | CAPACITOR-FXD 1UF +-20% 25VDC CER
CAPACITOR-FXD 32UF 25VDC AL | 28480
28480 | 0160-0127
0180-1083 | | | | | A16J1 | 1200-0654 | 7 | 1 | SOCKET-IC 40-CONT DIP DIP-SUDR | 28480 | 1200~0654 | | | | | A16R1
A16R2 | 1810-0279
068 3-47 25 | 5 | 1
1 | NETWORK-RES 10~SEP4.7K DHM X 9
RESISTOR 4.7K 5% ,25W FC TC=-4607+70C | 91121
01121 | 210A472
C84725 | | | | | A16U1 | 1820-2024 | 3 | 1 | TO DRIVE TILL US LINE DRIVE OCTU | 91255 | SN74LS244N | | | | | A16U2
A16U3 | 1820-2549
1820-2058 | 7 3 | 1
4 | IC-8291A P HPIB TO MISC TIL S GUAD TO MISC TIL S GUAD | 28480
28480
28480 | 1820~2549
1820~2058
1820~2658 | | | | | A1605 | 1820-2058
1820-1199 | 3 | 1 | TO INV TIL LS HEX 1-INP | 01295 | SN74LS04N | | | | | A16U6
A16U7 | 182 0 -20 58
1820-2058 | 3 | | IC HISC TTL S QUAD
IC MISC TTL S QUAD | 28480
28480 | 1820-2058
1820-2058 | | | | | A 1 6UB | 1820-1197 | 9 | 1 | TO GATE TIL US NAMD QUAD 2-INP | 01295 | SN74LS00N | | | | | | 04193-26516 | 0 | 1 | PCBD BLANK | 28480 | 04193-26516 | İ | <u> </u> | | | L | | | | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | ОD | Qty | Description | Mfr
Code | Mfr Part Number | |--|---|-----------------------|-----------------------|---|--|---| | A17 | | | | | | | | A17 | 04193-66517 | 8 | 1 | CONTROL LOGIC ECARD ASSEMBLY | 28430 | 94193-66517 | | A1701
A1702
A1703
A1704
A1705 | 0180-1083
0160-0127
0160-0127
0160-4835
0160-2266 | 3
2
2
7
4 | 4
3
2
2 | CAPACITOR-FXD 33UF 25VDC AL
CAPACITOR-FXD 1UF +-20% 25VDC CER
CAPACITOR-FXD 1UF +-28% 25VDC CER
CAPACITOR-FXD .1UF +-19% 50VDC CER
CAPACITOR-FXD 24PF +-5% 50CVDC CER 6+-30 | 28480
28480
28480
28480
28480 | 0180~1083
0160-0127
0166-0127
0160-0127
0160-2266 | | A1706
A1707
A1708
A1709
A17010 | 0160-2009
0160-4835
0180-1083
0160-0127
0180-1083 | 4
7
3
2
3 | | CAPACITOR-FXD 820PF +-5% 500VDC CER 0+-30
CAPACITOR-FXD .1UF +-10% 50VDC GER
CAPACITOR-FXD 35UF 25VDC AL
CAPACITOR-FXD 1UF +-20% 25VDC GER
CAPACITOR-FXD 33UF 25VDC AL | 26480
26480
56480
28480
56480 |
0165-4835
0130-1083
0168-0127
0180-1083 | | A17011
A17012
A17013 | 0180-1083
0180-0229
0180-0229 | 3
7
7 | 2 | CAPACITOR-FXD 33UF 25VDC AL
PAPACITOR-FXD 32UF+-10% 15VDC TA
CAPACITOR-FXD 33UF+-10% 16VDC TA | 28 490
5 6269
562 89 | 0180-1083
150D336X901082
150D336X9010R2 | | A170R1
A170R2
A170R3
A170R4
A170R5 | 1901-0040
1901-0518
1901-0518
1901-0046
1901-0040 | 1
8
3
1 | 3
2 | DIODE-SWITCHING 30V 50KA 2NS DO-35
DIODE-SM SIG SCHOTTKY
DTODE-SH STG SCHOTTKY
DIODE-SWITCHING 30V 50MA 2NS DO-35
DIODE-SWITCHING 30V 50MA 2NS DO-35 | 28480
28480
28480
28480
28480 | 1991-0940
1901-0510
1931-0518
1931-0840
1931-0340 | | A17CR6 | 1962-0041 | 4 | 1 | DIODE-ZNR 5.11V 5% DO-35 PD=.4W | 23480 | 1902-0041 | | A17J1
A17J2
A17J3
A17J4
A17J5 | 1200-0541
1200-0541
1200-0541
1200-0541
1200-0541 | 1
1
1
1 | 5 | SCCKETHIC 24-CONT DIP DIPHSLOR
SCCKETHIC 24-CONT DIP DIPHSLOR
SCCKETHIC 24-CONT DIP DIPHSLOR
SCCKETHIC 24-CONT DIP DIPHSLOR
SCCKETHIC 24-CONT DIP DIPHSLOR | 28480
23486
28480
23480
28480 | 1200-0541
1200-0541
1200-0541
1200-0541
1200-0541 | | A17J6
A17J7 | 1260-0607
1200-0654 | 0 7 | 1
1 | SOCKETHIC 16-CONT DIP DIPHSLDR
SOCKETHIC 40-CONT DIP DIP SLDR | 28480
28480 | 1200-0607
1200-0654 | | A17L1 | 9100-3139 | 5 | 1 | INDUCTOR 75UH 15% .5DX.875EG | 28490 | 9160-3139 | | A17Q1
A17Q2 | 1853-0015
1853-0015 | 7 7 | 2 | TRANSISTOR PNP SI PD=200MW FT=500MHZ
TRANSISTOR PNP SI PD=200MW FT=500MHZ | 28480
23480 | 1853-0015
1853-0015 | | A17R1
A17R2
A17R3
A17R4
A17R5 | 1810-0279
0683-2245
0683-4725
0683-5645
0683-1515 | 57272 | 3
1
4
1
2 | NETWORK-RES 10-S1P4.7K FOR X 9 RESISTOR 220K 5% .25W FC TC=-8007+900 RESISTOR 4.7K 5% .25W FC TC=-4307+730 RESISTOR 560K 5% .25W FC TC=-8007+900 RESISTOR 150 5% .25W FC TC=-4307+630 | 31121
01121
31121
01121
01121 | 213A472
CR2245
CB4725
CB5645
CB1515 | | A17R6
A17R7
A17R8
A17R9
A17R10 | 0683-2715
0683-1205
0683-2205
0683-1515
0683-2715 | 6
7
9
2
6 | 2
2
2 | RESISTOR 270 5% .25W FC TC=-400/4600
RESISTOR 12 5% .25W FC TC=-430/+530
RESISTOR 22 5% .25W FC TC=-400/+500
RESISTOR 150 5% .25W FC TC=-400/+630
RESISTOR 270 5% .25W FC TC=-400/+660 | 01121
01121
01121
01121
01121 | CB2715
CB1205
CB2205
CB1515
CB2715 | | A17R11
A17R12
A17R13
A17R14
A17R15 | 0683-1205
0683-2205
0683-3315
0683-3315
0683-4725 | 7
9
4
4
2 | 2 | RESISTOR 12 5% .25W FC TC=-400/+500
RESISTOR 22 5% .25W FC TC=-400/+500
RESISTOR 330 5% .25W FC TC=-400/+600
RESISTOR 330 5% .25W FC TC=-400/+600
RESISTOR 4.7K 5% .25W FC TC=-400/+700 | 01121
61121
01121
01121
01121 | CB1205
CB2205
CB3315
CB3715
CB4725 | | A17R16
A17R17
A17R18
A17R19 | 0693-4725
1910-0279
0693-4725
1810-0279 | 2525 | | RESISTOR 4.7K 5% .25W FC TC=-4007+760
NETWORK-RES 10-SIP4.7K OEM X 9
RESISTOR 4.7k 5% .25W FC TC=-4007+700
NETWORK-RES 10-SIP4.7K OEM X 9 | 01121
01121
01121
01121 | CB4725
210A472
CB4725
210A472 | | A1781
A1782 | 3101-1836
3101-0860 | 5 9 | 1
1 | SWITCH-SLIDC 8-1A
SWITCH-SLIDE DPDT-NS | 28480
28480 | 3101-1856
3101-0860 | | A17U1
A17U2
A17U3
A17U4
A17U5 | 1818-0438
1818-0438
04193-05001
04193-65002
04193-85063 | 4
4
5
6
7 | 2
1
1
1 | IC NMUS 4096 (4K) RAM STAT 450-NS 3-S
IC NMOS 4096 (4K) RAM STAT 450-NS 3-S
IC-PROGRAMMED (PROM)
IC-PROGRAMMED (PROM)
IC-PROGRAMMED (PROM) | 01295
01295
28480
28480
28480 | TMS2114-45N;
TMS2114-45NL
64193-85601
04193-85002
64193-85603 | | A17U6
A17U7
A17U8
A17U9
A17U10 | 04193-85094
04193-85005
1820-1216
1820-1199
1820-1216 | 8
9
3
1
3 | 1
1
4
2 | IC-PROGRAMMED (PROM) IC-PROGRAMMED (PROM) IC DEOR TIL US 3-TO-8-LINE 3-JNP IC INV TIL US HEX 1-INP IC DEOR TIL US 3-TO-8-LINE 3-INP | 28480
28486
01295
01295
01295 | 041 23-850 34
041 23-850 05
SN74LS138N
SN74LS138N
SN74LS136N | | A17U11
A17U12
A17U13
A17U14
A17U15 | 1820-1197
1826-0180
1820-1144
1820-1159
1820-1216 | 9
0
6
1
3 | 1
1
1 | IC GATE TTL LS NAND QUAD 2-INP IC TIMER TIL MENDVASTBL IC GATE TIL LS NUR QUAD 2-INP IC INV TIL LS HEX 1-INP IC DCDR TIL LS 3-TU-8-LINE 3-INP | 01295
01295
01295
01295
01295 | SN74LS00N
NE555P
SN74LS02N
SN74LS04N
SN74LS138N | | A17U16
A17U17
A17U18
A17U19
A17U20 | 1820-1112
1820-1204
1820-2075
1820-1490
1820-2024 | 8
9
4
3
3 | 1
1
1
1
6 | IC FF TIL US D-TYPE POS-EDGE-IRIG
IC CATE TIL US NAND DUAL 4-INP
IC MISC TIL US
IC MICPROC NAGS B-BIT
IC DRVR TIL US LINE DRVR GCTL | 01295
01295
01295
01295
04713
01295 | SN74LS74AN
SN74LS20N
SN74LS245N
M669CBL
SN74LS244N | Table 6-3. Replaceable Parts | Reference | HP Part | С | 0. | Description | Mfr | Mfr Part Number | |----------------------------|-------------------------------------|------------------|-----|---|-------------------------|--| | Designation | Number | C
D | Qty | Description | Code | Will Fart Wulliber | | A17U21
A17U22 | 1820-1196
1820-1196 | 8 | | IC FF TIL LS DHYPE POSHEDGE-TRIG COM
IC FF TIL LS DHYPE POSHEDGE-TRIG COM | 01295
01295 | SN74LS174N
SN74LS174N | | A17023
A17024
A17025 | 1820-1196
1820-1730
1820-1730 | B
6 | 2 | TO FE THE US DETYPE POSEEDGE-TRIG COM
TO FE THE US DETYPE POSEEDGE-TRIG COM
TO FE THE US DETYPE POSEEDGE-TRIG COM | 01295
01295
01295 | SN74LS174N
SN74LS273N
SN74LS273N | | A17U26
A17U27 | 1820-2024
1620-2024 | 3 | | IC DRVR TIL US LINE DRVR COIL
IC DRVR TIL US LINE DRVR COIL | 01295
01295 | SN74LS244N
SN74LS244N | | A17U28
A17U29
A17U30 | 1820-1416
1820-1216
1820-2024 | 3
5
3
3 | 1 | IC SCHMITT-TRIG TTL US INV HEX 1-INP
IC DODR TTL US 3-TO-8-UTNE 3-INP
IC DRVR TTL US LINE DRVR OCTU | 01295
01295
01295 | SN74LS14N
SN74LS136N
SN74LS244N | | A17U31
A17U32 | 1820-2024
1820-2024 | 3 | i | TO DRIVE THE ES LINE DRIVE DOTE
TO DRIVE THE ES LINE DRIVE DOTE. | 01295
01295 | SN74LS244N
SN74LS244N | | A17Wl | 1251-4787 | 2 | | SHUNT-DIP 8-20SITON | 28480 | 1251-4787 | | | 04193-26517 | 0 | 1 | PCBD BLANK | 28480 | 04193-26517 | <u> </u> | Table 6-3. Replaceable Parts | Reference
Designation | HP Part | C | Qty | Description | Mfr | Mfr Part Number | |---|--|--|-------------------------
--|--|---| | | Number | Н | | 2 330.178.3 | Code | Will I dit Nulliber | | A18 | 04193-66519 | 9 | 1 | DIGPLAY FOADD ASSEMBLY | | | | A18C1
A18C2
A18C3
A18C4
A18C5
A18C6
A18C7
A18C8
A18C9
A18C10
A18C10
A18C11
A18C12
A18C13
A18C13
A18C14
A18C15
A18C15
A18C15
A18C15
A18C16
A18C17
A18C18
A18C18 | 04193-66519 0160-4835 0160-4901 0160-4801 0180-1083 0180-1083 0180-1083 0180-1083 0180-1083 0180-1083 0180-1083 0180-1083 0180-1083 0180-1083 0180-229 0180-229 0180-229 0180-229 0180-229 0160-4830 1901-0040 | 757833333332775211 | 1 1 1 1 7 7 1 2 2 1 2 2 | DISPLAY ECARD ASSEMBLY CAPACITOR-FXD .1LIF +-10% 50VDC CEP CAPACITOR-FXD .022UF +-10% 20VDC POLYE CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR-FXD 33UF 25VDC AL +-10% 16VDC CER CAPACITOR-FXD 33UF+-10% 16VDC TA CAPACITOR-FXD 33UF+-10% 10VDC TA CAPACITOR-FXD 100UF+-10% 10VDC TA CAPACITOR-FXD 200FF +-10% 10VDC CER DIDDE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 | 28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480 | 04193-66518
0160-4835
0160-4801
0160-4801
0180-1083
0180-1083
0180-1083
0180-1083
0180-1083
0180-1083
0180-1083
0180-1083
0180-1083
0160-4822
150D336X9010B2
150D107X9010B2
0160-4830
1901-0040 | | A18DS1
A18DS2
A18DS3
A18DS4
A18DS5
A18DS5
A18DS6
A18DS9
A18DS9
A18DS10
A18DS11
A18DS12
A18DS12
A18DS13
A18DS14
A18DS15
A18DS14
A18DS15
A18DS16
A18DS17
A18DS19
A18DS17
A18DS19
A18DS20
A18DS20
A18DS20
A18DS22
A18DS23
A18DS25
A18DS25
A18DS25
A18DS25
A18DS25
A18DS25
A18DS25
A18DS25
A18DS25
A18DS25
A18DS25
A18DS26
A18DS27
A18DS27
A18DS28
A18DS28
A18DS29
A18DS29
A18DS29
A18DS29
A18DS29
A18DS29
A18DS29
A18DS29
A18DS29
A18DS29
A18DS29
A18DS29 | 1790-0486
1790-0486
1790-0486
1790-0486
1790-0486
1790-0486
1790-0540
1790-0540
1790-0540
1790-0540
1790-0540
1790-0540
1790-0540
1790-0540
1790-0540
1790-0540
1790-0540
1790-0540
1790-0531
1790-0531
1790-0531
1790-0531
1790-0665
1790-0665
1790-0665
1790-0665
1790-0665
1790-0665
1790-0665
1790-0665
1790-0665
1790-0665 | 6666666333366533332222328333333333333333 | 9 8 4 | LED-LAMP LUM-INT=IMCD IF=20MA-MAX 5VR=5V LED-LAMP LUM-INT=IMCD IF=20MA-MAX BVR=5V DISPLAY-NUM-SEG I-CHAR 43-H 3-H DISPLAY-N | 28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480
28480 | 5082-4684 5082-4684 5082-4684 5082-4684 5082-4684 5082-4684 5082-4684 5082-7650 5082-7650 5082-7650 5082-7650 5082-7650 5082-7650 5082-7650 5082-7650 5082-7650 5082-7650 5082-7650 5082-7650 5082-7650 5082-7650 5082-7650 5082-7610 | | A18DS31
A18DS32
A18DS33
A18DS34
A18DS35 | 1990-0665
1990-0665
1990-0665
1990-0665
1990-0665 | 3
3
3
3
3 | | LED-LAMP LUM-INT=IMCD IF=20MA-MAX BUR=5V
LSD-LAMP LUM-INT=IMCD IF=20MA-MAX BUR=5V
LED-LAMP LUM-INT=IMCD IF=20MA-MAX BUR=5V
LED-LAMP LUM-INT=IMCD IF=20MA-MAX BUR=5V
LED-LAMP LUM-INT=IMCD IF=20MA-MAX BUR=5V | 28480
28480
28480
28480
28480 | 1970-0665
1990-0665
1970-0665
1970-0665
1990-0665 | | A18DS36
A18DS37 | 1990-0665
1990-0665 | 3 | | LED-LAMP LUM-INT=1MCD 1F=20MA-MAX 5VR=5V
LED-LAMP LUM-INT=1MCD 1F=20MA-MAX BVR=5V | 28480
28480 | 1990-9665
1970-0665 | | A18J1
A18J2
A18J3
A18J4
A18J5 | 1200-0638 | 67777 | 1
12 | CABLE-TRANSITION SOCKET-IC 14-CONT DIP DIP-SLDR | 28480
28480
28480
28480
28480 | 0360-1901
1200-0638
1200-0638
1200-0638
1200-0638 | | A18J6
A18J7
A18J8
A18J9
A18J9 | 1200-0638
1200-0638 | 7 7 7 7 7 | | SOCKETHIC 14-CONT DIP DIPHSLDR
SOCKETHIC 14-CONT DIP DIPHSLDR
SOCKETHIC 14-CONT DIP DIPHSLDR
SOCKETHIC 14-CONT DIP DIPHSLDR
SOCKETHIC 14-CONT DIP DIPHSLDR | 28480
28480
28480
28480
28480 | 1200-0638
1200-0638
1200-0638
1200-0638
1200-0638 | | A18J11
A18J12
A18J13 | 1200-0639 | 7
7
7 | | SOCKETHIC 14-CONT DIP DIPHSLDR
SOCKETHIC 14-CONT DIPHDIPHSLDR
SOCKETHIC 14-CONT DIPHDIPHSLDR | 28480
28480
28480 | 1230-0638
1206-0638
1203-0638 | | A18L1 | 9100-3139 | 5 | 1 | COIL-75UH 15% | 28480 | 9100-3139 | | A16Q1
A18Q2
A16Q3
A18Q4
A16Q5 | 1853-0318
1853-0318
1853-0318 | 3 3 3 3 3 | 15 | TRANSISTOR PNP SI PD=500MW FT=60MHZ | 0.4713
0.4713
0.4713
0.4713
0.4713 | HPS6562
HPS6562
MPS6562
HPS6562
MPS6562
MPS6562 | | A1.8Q6
A1.6Q7
A1.8Q8
A1.8Q9
A1.8Q10 | 1853-0318
1853-0318
1853-0318 | 3
3
3
3
3 | | TRANSISTOR PNP ST PD=500MW FT=60MHZ | 04713
04713
04713
04713
04713 | MP96562
MP96562
MP96562
MP96562
MP96562 | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |--|--|-----------------------|-----------------------|--|---|---| | A18Q11
A15Q12
A18Q13
A15Q14
A18Q15 | 1853-0318
1853-0318
1853-0318
1853-0318
1853-0318 | 3
3
3
3
3 | | TRANSISTOR PNP SI PD=500MW FT=60MHZ | 04713
04713
04713
04713
04713 | MPS6562
MPS6562
MPS6562
MPS6562
MPS6562 | | A18Q16
A18Q17
A16Q18
A18Q19
A16Q20 | 1854-0071
1854-0071
1654-0071
1854-0671
1854-0071 | 7
7
7
7
7 | 8 | TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR
NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI 2D=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ | 28480
28480
28480
28480
28480 | 1654-0071
1854-0071
1854-0071
1854-0071
1854-0071 | | A18Q21
A16Q22
A18Q23 | 1854-0671
1854-0071
1854-0671 | 7
7
7 | | TRANSISTOR NEN ST PD=300MW FT=260MHZ
TRANSISTOR NEN SI PD=330MW FT=299MHZ
TRANSISTOR NEN SI PD=360MW FT=260MHZ | 28480
28480
28480 | 1854-0671
1854-0071
1854-0671 | | A10R1
A18R2
A16R3
A18R4
A16R5 | 0693-3315
0693-3315
0693-3315
0693-3315
0693-3315 | 4 4 4 4 | 7 | RESISTOR 330 5% .25W FC TC=-400/+600
RESISTOR 330 5% .25W FC TC=-400/+600 | 01121
01121
01121
01121
01121 | CB3315
CB3315
CB3315
CB3315
CB3315 | | A18R6
A16R7
A18R8
A18R9 | 06-93-3315
06-93-3315
06-93-1025
06-93-1025 | 4
9
9 | 2 | RESISTOR 330 5% .25W FC TC=-400/+600
RESISTOR 330 5% .25W FC TC=-400/+600
RESISTOR 1K 5% .25W FC TC=-400/+600
RESISTOR 1K 5% .25W FC TC=-400/+600 | 01121
01121
01121
01121 | CB3315
CB3315
CB1025
CB1025 | | A18R10
A18R11
A18R12
A18R13
A16R14 | 0683-4715
0683-3305
0683-3305
0683-3305
0683-3305 | กกกกก | 4
8 | RESISTOR 470 5% .25W FC 1C=-400/+600
RESISTOR 33 5% .25W FC TC=-400/+500
RESISTOR 33 5% .25W FC TC=-400/+500
RESISTOR 33 5% .25W FC TC=-400/+500
RESISTOR 33 5% .25W FC TC=-400/+500 | 01121
01121
01121
01121
01121 | CB4215
CB3305
CB3305
CB3305
CB3305 | | A18R15
A1CR16
A18R17
A18R18
A18R19
A18R20
A18R21
A1CR22
A18R23
A18R24
A18R25 | 0693-3305
0693-3305
0693-3305
1690-3305
1810-0275
1810-0275
1810-0283
0683-2235
0683-1045
1810-0275 | 2222115511 | 3
2
1
1 | RESISTOR 33 5% .25W FC TC=-400/+500 NETWORK-RES 10-S1P1.0K 0.HM X 9 NETWORK-RES 10-S1P1.0K 0.HM X 9 NETWORK-RES 16-DIP270.0 0.HM X 8 RESISTOR 22K 5% .25W FC TC=-400/+600 PSISTOR 100K 5% .25W FC TC=-400/+800 NETWORK-RES 10-S1P1.0K 0.HM X 9 NETWORK-RES 10-S1P1.0K 0.HM X 9 NETWORK-RES 10-S1P1.0K 0.HM X 9 | 01121
01121
01121
01121
01121
01121
28480
01121
01121
01121
28480 | C83305
C83305
C83305
C83305
210A102
210A102
1810-0283
C82235
C81045
210A102
1810-0283 | | A18R26
A18R27
A18R28
A16R29
A18R30 | 1810-0279
1810-0279
1810-0279
0683-1015
0693-1515 | 55572 | 3
1
1 | NETWORK-RES 10-STP4.7k OHM X 9
NETWORK-RES 10-STP4.7k OHM X 9
NETWORK-RES 10-STP4.7k OHM X 9
RESTSTUR 190 5% .25W FC TC=-400/+500
RESISTOR 150 5% .25W FC TC=-400/+600 | 01121
01121
01121
01121
01121 | 216A472
210A472
210A472
CB1315
CB1515 | | A16R31
A18R32
A18R33 | 0683-4715
0683-4715
0683-4715 | 0
0
0 | | RESISTOR 470 5% .25W FC TC=-430/+630
RESISTOR 470 5% .25W FC TC=-400/+660
RESISTOR 470 5% .25W FC TC=-400/+600 | 01121
01121
01121 | CB4715
CB4715
CB4715 | | A1831
A1852
A1883
A1654
A1885 | 5060-9436
5060-9436
5060-9436
5060-9436
5060-9436 | 7 7 7 7 | 23 | PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. NGUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT | 28480
28480
28480
28480
28480
28490 | 5060-9435
5060-9436
5060-9435
5060-9436
5060-9436 | | A1836
A1657
A1858
A1859
A18510 | 5060-9436
5060-9436
5060-9436
5060-9436
5060-9436 | 7 7 7 7 | | PUSHRUTTON SWITCH P.C. MOENT PUSHBUTTON SWITCH P.C. MOENT PUSHBUTTON SWITCH P.C. MOENT PISHBUTTON SWITCH P.C. MOENT PUSHBUTTON SWITCH P.C. MOENT | 28480
28480
28480
28480
28480 | 5060-9436
5060-9436
5060-9436
5060-9436
5060-9436 | | A18511
A18512
A18513
A18514
A18515 | 5060-9436
5060-9436
5060-9436
5060-9436
5060-9436 | 7 7 7 7 | | PUSHBUTTON SWITCH P.C. MOUNT | 28480
28480
28480
28480
28480
78480 | 5360-9436
5060-9436
5060-9436
5060-9436
5360-9436 | | A18816
A18817
A18818
A18819
A18820 | 50 60-9436
5060-9436
5060-9436
5060-9436
5060-9436 | 7 7 7 7 | | PUSHBUTTON SWITCH P.C. HOUNT PUSHBUTTON SWITCH P.C. KOUNT PUSHBUTTON SWITCH P.C. HOUNT PUSHBUTTON SWITCH P.C. KOUNT PUSHBUTTON SWITCH P.C. KOUNT | 28480
28480
28480
28480
28480 | 5060-9436
5060-9436
5060-9436
5060-9436
5060-9436 | | A18521
A18522
A18523 | 5060-9436
5060-9436
5060-9436 | 7 7 7 | | PUSHBUTTON SWITCH P.C. KOUNT PUSHBUTTON SWITCH P.C. HOUNT PUSHBUTTON SWITCH P.C. KCENT | 28480
28480
28480 | 5060-9436
5060-9436
5060-9436 | | A18U1
A18U2
A18U3
A18U4
A18U5 | 1826-0180
1820-0495
1820-1423
1820-1197
1820-1851 | 0
8
4
9
2 | 1
1
1
1
3 | IC TIMER TIL MOND/ASTRL IC DEDR TIL 4-10-16-LINE 4-INP IC MV TIL LS MONDOTBL RETRIC DUAL IC GAIE TIL LS NAND QUAD 2-INP IC ENCOR TIL LS | 01295
01295
01295
01295
01295 | NE555P
SN74154N
SN74LS123N
SN74LS123N
SN74LS148N | | | | | | | | | Table 6-3. Replaceable Parts | lable 6-3. Replaceable Parts | | | | | | | |--|---|-----------------------|-----------------------|---|---|--| | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | | A18U6
A18U7
A18U8
A18U9
A18U10 | 1820-1851
1820-1851
1820-1278
1820-0628
1820-0628 | 22799 | 1
2 | IC ENCOR TTL US IC ENCOR TTL US IC ENCOR TTL US IC ENTRITULES BIN UP/DOWN SYNCHRO IC TTL 64-BIT RAM STAT 60-NS 0-C IC TTL 64-BIT RAM STAT 60-NS 0-C | 01295
01295
01295
01295
01295 | 5N74LS14BN
5N74LS14BN
5N74LS191N
5N74R9N
5N7469N | | A18U11
A18U12
A18U13
A18U14
A18U15 | 1820-1425
1820-1204
1820-1199
1820-1202
1820-1203 | 6
9
1
7
8 | 2
1
1
2
1 | IC SCHMITT-TRIG TTL LS NAND QUAD 2-INP IC GATE TTL LS NAND BUAL 4-INP IC INV TTL LS HEX 1-INP IC GATE ITL LS NAND TPL 3-INP IC GATE ITL LS NAND TPL 3-INP | 01295
01295
01295
01295
01295 | SN74LS132N
SN74LS20N
SN74LS04N
SN74LS10N
SN74LS11N | | A18U16
A18U17
A16U18
A18U19
A18U20 | 1820-1202
1820-1200
1820-1997
1820-1730
1820-1425 | 7
5
7
6 | 1
1
1 | IC GATE TIL LS NAND TPL 3-INP IC INV TIL LS HEX IC FF TIL LS D-TYPE POS-EDGE-TRIG PRL-IN IC FF TIL LS D-TYPE POS-EDGE-TRIG COM IC SCHMITT-TRIG TIL LS NAND GUAD 2-INP | 01295
01295
01295
01295
01295 | SN74LS10N
SN74LSC5N
SN74LS374N
SN74LS373N
SN74LS132N | | A18U21
A18U22
A18U23 | 1820-1112
1820-1112
1820-1112 | 8 | 3 | IC FF TTL LS D-TYPE POS-EDGE-TRIG
IC FF TTL LS D-TYPE POS-EDGE-TRIG
IC FF TTL LS D-TYPE POS-EDGE-TRIG | 01295
01295
01293 | SN74LS74AN
SN74LS74AN
SN74LS74AN | | A18W1 | 04193-61601 | 1 | 1 | CABLE ASSEMBLY-FLAT | 23480 | 04193-61601 | | | 1400-0249
5040-3322
5041-0276
5041-0265
5041-0318 | 0
6
5
6 | 1
8
2
8
4 | CABLE TIE .062625-DIA .091-WD NYL
INSULATUR
KEY CAP-PEARL GRAY
KEY CAP-GUARIER LIGHT GRAY
KEY CAP | 06383
28480
28480
28480
28480 | PLT1M-8
5040-3322
5041-0276
5341-0265
5041-0318 | | | 5041-0375
5041-0384
5041-0408
5041-0450
5041-0450 | 5
6
5
7
8 | 2
3
1
1
2 | KEY CAP-QUARTER SMK
KEY CAP-QUARTER SMOKE GRAY
KEY CAP
KEY CAP
KEY CAP-QUARTER ERY-PRL | 28480
28480
28480
28480
28480 | 5041-0325
5041-0384
5041-0408
5041-0450
5041-0922 | | | 5060-9444 | 7 | 1 | ROTARY PULSE GENERATOR | 28480 | 5066-9444 | | | 04193-26518 | | 1 | PCBD BLANK | 28480 | 04193-26518 | | | | | | | | | | | | | | | | | Table 6-3. Replaceable Parts | Reference | HP Part | С | Qty | Description | Mfr | Mfr Part Number | |--|---|-----------------------|-----------------------|--|--|--| | Designation | Number | D | | | Code | | | A20 | 94193~66520 | 3 | 1 | POWER SUPPLY ICARD ASSEMBLY | 28480 | 04193-66520 | | A20C1
A20C2
A20C3
A20C4
A20C5 | 0180-3180
0180-3180
0180-3181
0180-1075
0180-3183 | 4
4
5
3
7 | 1
1
1
2 | CAPACITOR-FXO 1000GUF 16VDC
CAPACITOR-FXD 1380GUF 16VDC
CAPACITOR-FXD 688GUF 35VDC
CAPACITOR-FXD 2230 UF 16VTC AL
CAPACITOR-FXD 47GUF 56VDC | 28490
28480
28480
28480
28480
28480 | 0180-3180
0180-3180
0180-3181
0180-1075
0180-3183 | | A20C6
A20C7
A20C8
A20C9
A20C10 | 0180-2205
0180-0374
0180-0374
0180-0374
0180-0374 | 3
3
3
3
3 | 1
6 | CAPACITOR-FXD .33UF+ 10% 55VDC TA
CAPACITOR-FXD 10UF+-16% 20VDC TA
CAPACITOR-FXD 10UF+-10% 20VDC TA
CAPACITOR-FXD 10UF+-10% 20VDC TA
CAPACITOR-FXD 10UF+-10% 20VDC TA | 56869
5428 7
54269
54287
54289 | 1500334X9035A2
1507106X9020B2
1500106X9023B2
1500106X9020B2
1500106X9020B2 | | A20011
A20012
A20013
A20014
A20015 | 0180-0374
0180-0374
0160-4835
0180-3182
0180-0291 | 3
3
7
6
3 | 2
1
1 | CAPACITOR-EXD 10UF+-10% 20VBC TA
CAPACITOR-EXD 10UF+-10% 25VBC TA
CAPACITOR-EXD 11UF +-10% 25VBC
CER
CAPACITOR-EXD 220SUF 35VBC
CAPACITOR-EXD 1UF+-10% 35VBC TA | 56289
56269
23480
23480
56289 | 150F106X9020E2
150D106X9020E2
0160-4835
0180-3182
150F105X903562 | | A29C16
A29C17
A29C1B
A20C19
A20C20 | 0180-3183
0186-2141
0160-4835
0180-0291
0180-0291 | 7
6
7 | 1 2 | CAPACITOR-FXD 470UF 50VDC CAPACITOR-FXD 3.3UF+ 10% 50VDC TA CAPACITOR-FXD 1.UF +10% 50VDC CER CAPACITOR-FXD 1UF 35VDC TA CAPACITOR-FXD 1UF 35VDC TA | 28480
54287
28480 | 0180-3183
1500335X905002
3163-4835 | | A20CR3
A20CR4
A20CR5
A20CR6
A20CR7 | 1961-0731
1701-0731
1901-0237
1902-3086
1901-0640 | 7
7
8
3 | 2
1
1
2 | DIODE-PWR RECT 400V 1A
DIODE-PWR RECT 400V 1A
DIODE:SI, RECTIFIER BRIDGE, 200V
DIODE-ZNR 4.75V 2% DO-35 PD=.4W
DIODE-SWITCHING 30V 50MA 2NG DO-35 | 28480
28480
28480
28480
28480 | 1901-0731
1291-0731
1291-0237
1292-3086
1201-0640 | | A20CRB
A20CR9
A20CR10
A20CR11 | 1901-0040
1906-0096
1902-0040
1902-1217 | 1
7
1
8 | 1
1
1 | DIODE-SWITCHING 30V 50MA 2NS TO-35
DIODE-FW BRDC 200V 2A
DIODE-ZNR 6.01V 5% DO-35 PD=.4W
DIODE-ZNR 6.2V 5% DO-4 PD=10W TC=+.035% | 28480
04713
28480
28480 | 1931-0040
MDA262
1932-0348
1932-1217 | | A20F1
A20F2
A20F3
A20F4
A20F5 | 2110-0007
2110-0201
2110-0015
2110-0003
2110-0303 | 4 0 6 3 | 2
1
1
1
1 | FUSE 1A 250V TO 1.25X.25 bt.
FUSE .25A 250V TD 1.25X.25 UC
FUSE 2.5A 250V TD 1.25X.25
FUSE 3A 250V TD 1.25X.25
FUSE 2A 250V TD 1.25X.25 bt. | 75915
75915
28480
28480
28480 | 313001
313.250
2110-0015
2110-0003
2110-0303 | | A20F6 | 2110-0007 | 4 | | FUSE 1A 250V TD 1.25X.25 UL | 75915 | 313861 | | A20J1
A20J2
A20J5
A20J6
A20J7 | 1251-5862
1251-5862
1251-5862
1251-5862
1251-5862 | 6 6 6 6 | 8 | CONNECTOR 4-PIN M METRIC FOST TYPE
CONNECTOR 4-PIN M METRIC POST TYPE | 28480
23480
28480
28480
28480 | 1751-5862
1251-5862
1751-5862
1251-5862
1751-5862 | | A20J8
A20J9
A20J10
A20J11
A20J12 | 1251-5862
1251-5862
1251-5862
1251-3198
1251-3197 | 6676 | 1
1 | CONNECTOR 4-PIN M METRIC POST TYPE
CONNECTOR 4-PIN M METRIC POST TYPE
CONNECTOR 4-PIN M HETRIC POST TYPE
CONNECTOR 15-PIN M POST TYPE
CONNECTOR 12-PIN M POST TYPE | 28480
28480
23400
28480
28480 | 1251-5862 /
1251-5862
1251-5862
1251-3198
1251-3197 | | A20R1
A20R2
A20R3 | 0683-6825
0698-7457
0698-7457 | 7 | 4 | RESISTOR 6.BK 5% .25W FC TC=-400/+700
RESISTOR 18 2% 2W
RESISTOR 18 2% 2W | 01121 | 026852 | | AZOR6
AZOR7
AZOR8
AZOR9
AZOR10 | 0698-3444
0693-0695
0698-3444
0693-0695
0757-0401 | 1
5
1
5
0 | 2
2
1 | RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 6.3 5% .25W FC TC=-490/4530 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 6.8 5% .25W FC TC=-430/+530 RESISTOR 100 1% .125W F TC=0+-100 | 24546
31121
24546
31121
24546 | C4-1/8-T0-3169-F
CE4865
C4-1/8-T0-3169-F
CE4865
C4-1/8-T0-101-F | | A20R11
A20R12
A20R13
A20R14
A20R15 | 0757-0274
0683-1025
0683-4705
0683-6825
0683-6825 | 5
8
7
7 | 1
1
1 | RESISTOR 1.21K 1% .125W F TC=0+-100
RESISTOR 1K 1% .25W F TC=0+-100
RESISTOR 47 5% .25W FC TC=-400/+500
RESISTOR 6.8K 5% .25W FC TC=-400/+700
RESISTOR 6.8K 5% .25W FC TC=-400/+700 | 24546
03838
01121
01121
01121 | C4 1/8-T0-1211 F
PMS55-1/8-T0-21R5 F
CB4705
CB4825
CB6825 | | A20R16
A20R17
A20R18
A20R19
A20R20 | 0683-1025
0683-1535
0683-2215
0683-6825
0757-0398 | 9
6
1
7
4 | 2
1
1
1 | RESISTOR 1W 5% .25W FC TC=-400/+600
RESISTOR 15K 5% .25W FC TC=-400/+800
RESISTOR 220 5% .25W FC TC=-400/+600
RESISTOR 6.BK 5% .25W FC TC=-400/+700
RESISTOR 75 1% .125W F TC=0+-100 | 61121
01121
61121
01121
24546 | CR1025
CB1535
CB2215
CB6025
C4-178-T0-7580-F | | A20R21
A20R22
A20R23
A20R24
A20R25 | 0757-0277
0698-0024
0683-2225
2100-3210
0757-0442 | 8
7
3
6
9 | 1
1
1
1 | RESISTOR 49.9 1% .125W F 1C=0+-100
RESISTOR 2.61K 1% .5W F TC=0+-100
RESISTOR 2.2K 5% .25W FC TC=-499/+733
RESISTOR-TRMR 10K 10% C TO9-ADJ 1-TRN
RESISTOR 10K 1% .125W F TC=0+-100 | 24546
23480
01121
23480
24546 | C4-1/B-T3-4992-F
0/97-0024
CM2255
2100-3210
C4-1/B-T3-1002-F | | A20R26
A20R27 | 0683-1825
0683-1825 | 9 | | RESISTOR 1.8K 5% .25W FC TC=-400/+600
RESISTOR 1.8K 5% .25W FC TC=-400/+600 | | | Table 6-3. Replaceable Parts | l'adie 6-3. Replaceable Parts | | | | | | | |---|--|--------|-----|--|----------------------------------|---| | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | | A20U1
A20U2
A20U3
A20U4
A20U5 | 1826-0215
1820-0493
1826-0527
1826-0165
1826-0106
2110-0269 | 2690 | 1 | IC V ROLIR TO-220 IC O2 AMP OP B-DIP-P PKG IC 337 V ROLIR TO-220 IC COMPARATOR PRON B-DIP-P PKG IC V ROLIR 7815 FUSCECULORR-CLIP TYPE.25D-2USE | 34713
27014
27014
01295 | MC7905.2CT
LM367N
LM337T
SN72311P
2110-0269 | | A20W3 | 8159-0005 | | 1 | JUMPER WIRE | | | | | 04193-26520 | 0 | 1 | PCBD BLANK | 28480 | 04193-26520 | Table 6-3. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |--------------------------------------|--|-------------|-------------|--|----------------------------------|--| | A41 A51 A52 | | | | | | | | A41 | 04193-66541
04193-26541 | B
0 | 1
1 | DELAY BOARD AGSEMBLY
PCBD BLANK | 28480
28480 | 04193-66541
04193-26541 | | A51 | 64193 66551 | 1 | 1 | PROBE I CHANNEL BOARD ASSEMBLY | 28480 | 04193-66551 | | A51C1 | 0160-4249 | 7 | 2 | CAPACITOR-FXD 4.7PF +5PF 53VDC CER | 2665.4 | 3EN05054R7D(D) | | A51CR1
A51CR2
A51CR3
A51CR4 | 5080-3829
5080-3829
5080-3829
5080-3829 | 8 8 | ε | DIODE-SM SIG SCHOTTKY
DIODE-SM SIG SCHOTTKY
DIODE-SM SIG SCHOTTKY
DIODE-SM SIG SCHOTTKY | 28480
28480
28480
28480 | 5080-3829
5080-3829
5080-3829
5080-3829 | | A51Q1 | 1855-0465 | | 4 | TRANSISTOR-FET NOCHANNEL | | | | ASTR1 | 0699-0920 | | | RESISTOR-FXD 50 OHM 1% 1/16W | | | | A51T1 | 0.4193~61552
04193-26551
64123~6552 | 1 0 1 | 2
1
1 | BALUN
PCBD BLANK
PRODE V CHANNEL BOARD ASSEMBLY | 28480
28480
28480 | 04193-61552
04193-26551
04193-66552 | | A5001
A5002 | 0160-4249
0160-5427 | 7 3 | 1 | CAPACITOR-FXD 4.7PF +5PF 50VDC CER
CAPACITOR-FXD 0.1UF +-10% 100VDC | 26554
28480 | 35N650S4R7D(D)
0160-5427 | | A520R1
A520R2
A520R3
A520R4 | 5080-3829
5080-3829
5080-3829
5080-3829 | 8
8
8 | | DIODE-SM SIG SCHOTTKY DIODE SH SIG SCHOTTKY DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY | 28480
28480
28480
28480 | 5080-3829
5080-3829
5080-3829
5080-3829 | | A/52Q1 | 1855-0465 | | | TRANSICTOR-FET N CHANNOL | | | | A52R1 | 0699-0920 | | | RESISTOR-50 OFM 1% .1/16W | | | | A52T1 | 04193-61552 | 1 | | BALUN | 28486 | 64193-61552 | | | 04193-26552 | 0 | 1 | PCDB BLANK | 28480 | 04193-26552 | | | | | | | | | | | | | | | | | Table 6-4. Parts Identification | Reference
Designation | HP Part Number | Qty | Description | Mfr
Code | Mfr Part Number | |----------------------------|---|----------------------------|--|-------------|-----------------| | 1
2
3
4 | 0370-3033
04193-00201
04193-00202
04262-40002
04140-25001 | 1
1
1
1 | KNOB
FRONT PANEL (HP)
FRONT PANEL (YHP)
WINDOW
WINDOW | 0000 | | | 5
6
7
8 | 7120-1254
7120-0478
04193-40001
04191-40001
04193-24002 | 1
1
1
1
1 | TRADE MARK (HP)
TRADE MARK (YHP)
PROBE HOLDER
GUIDE
NUT | | | | 9
10
11
12
13 | 04193-24001
04193-21001
5041-0564
5040-7201
5060-9847 | 1
1
1
4
1 | NUT
BODY RECEPTACLE
KEY CAP
FOOT
BOTTOM COVER | | | | 14
15
16
17
18 | 1460-1345
04193-25101
2510-0192
2360-0115
5040-7219 | 2
1
16
15
2 | STAND
ROD
SCREW
SCREW
FRONT CAP | | | | 19
20
21
22
23 | 2680-0172
5060-9804
5060-9942
2360-0115
2110-0569 | 4
2
2
4
1 | SCREW
HANDLE
SIDE COVER
SCREW
NUT | | | | 24
25
26
27 | 04192-40002
3101-2216
3050-0235
2190-0225
0515-0150 | 1
1
2
2
2
2 | COUPLER POWER SWITCH WASHER (F) WASHER (S) SCREW | | | | 28
29
30
31
32 | 5040-7220
3160-0390
9100-4176
2110-0564
2110-0304 | 2
1
1
1
1 | REAR CAP
FAN
TRANSFORMER
FUSE HOLDER
FUSE | | | | 33
34
35
36
37 | 2110-0565
5020-8806
2510-0045
3050-0139
2360-0117 | 1
1
4
4
4 | CAP
REAR FRAME
SCREW
WASHER
SCREW | | | | 38
39
40
41
42 | 2420-0006
04193-04001
2360-0113
2740-0003
3050-0226 | 4
1
8
2
2 |
NUT
COVER
SCREW
NUT
WASHER | | | | 43
44
45
46
47 | 1200-0080
0624-0260
2190-0008
5000-4207
2190-0057 | 4
10
10
1
2 | INSULATOR
SCREW
WASHER
SHORT BAR
WASHER | | | | 48
49
50
51
52 | 1901-0496
1250-0118
2950-0035
04271-50024
04193-60101 | 2
5
1
1 | DIODE
BNC CONNECTOR (FEMALE)
NUT
INSULATOR
REAR PANEL | | | | 53
54
55
56
57 | 2360-0113
04262-66503
2190-0016
2950-0001
1250-0252 | 8
1
8
5 | SCREW
HP-IB CONNECTOR
WASHER
NUT
BNC CONNECTOR (FEMALE) | | | | 58
59
60
61
62 | 04271-50025
04193-01204
04193-00605
2360-0113
04193-01205 | 1
1
1
2
1 | INSULATOR
ANGLE
PLATE
SCREW
SUPPORT | | | | 63
64
65
66
67 | 04193-01203
2360-0113
5060-9835
2360-0333
5020-8805 | 1
3
1
6
1 | ANGLE
SCREW
TOP COVER
SCREW
FRONT FRAME | | | | 68
69
70
71
72 | 04193-00203
1826-0203
1826-0169
1820-0430
1854-0611 | 1
1
1
2 | SUB PANEL TRANSISTOR (U4) TRANSISTOR (U3) TRANSISTOR (U1 and U2) TRANSISTOR (Q1) | | | | | | | | | | Figure 6-1. Exploded View of Probe Assembly. Figure 6-2. Top View of Extrusion Boards. Table 6-5. Cables on Extrusion Boards. | Terminals | Cable Part No. | Cable Length | Color | | | |------------------|----------------|--------------|--------|-------------|--| | remmais | Cable Fart No. | Cable Length | Cable | Heat shrink | | | A1P1 — A3P2 | 04193-61631 | 380 mm | blue | black | | | | 04193-61615 | 100 mm | | red | | | A1P2 — A4P2* | 04193-61616 | 150 mm | yellow | yellow | | | | 04193-61617 | 200 mm | | blue | | | A1P3 — A5P3 | 04193-61619 | 180 mm | blue | yellow | | | A2P1 — A9P3 | 04193-61620 | 220 mm | blue | blue | | | A2P2 — Probe (I) | | | blue | blue | | | A3P1 — Probe (A) | | | blue | blue | | | A3P3 — Probe (B) | - | | blue | blue | | | A3P4 — Probe (C) | | | blue | blue | | | A3P5 — Probe (D) | | | blue | blue | | | A4Pl — Probe (E) | - | | blue | blue | | | A4P3 — Probe (F) | | | blue | blue | | | A4P4 — Probe (G) | | | blue | blue | | | A4P5 — Probe (H) | | | blue | blue | | | A5P1 — A6P2 | 04193-61618 | 70 mm | blue | red | | | A5P2 — A10P3 | 04193-61620 | 220 mm | blue | blue | | | A6P1 — A8P2 | 04193-61619 | 180 mm | blue | yellow | | | A7P1 — A10P1 | 04193-61619 | 180 mm | blue | yellow | | | A7P2 — A9P4 | 04193-61618 | 70 mm | blue | red | | | A7P3 — A9P5 | 04193-61618 | 70 mm | blue | red | | | A7P4 — A8P3 | 04193-61618 | 70 mm | blue | red | | | A8P1 — A9P1 | 04193-61618 | 70 mm | blue | red | | | A9P2 — A10P2 | 04193-61618 | 70 mm | blue | red | | | A9P6 — EXT OSC | 04193-61603 | 600 mm | blue | blue | | *: cables for adjustment Figure 6-3. Shield Box (Sheet 1 of 3). Figure 6-3. Shield Box (Sheet 2 of 3). Figure 6-3. Shield Box (Sheet 3 of 3). Figure 6-4. Probe Dimensions. # SECTION VII MANUAL CHANGES ## 7-1. INTRODUCTION 7-2. This section contains information for adapting this manual to instruments to which the contents do not directly apply. The following paragraphs explain how to adapt this manual to apply to older instruments with a lower serial prefix. ## 7-3. MANUAL CHANGES - 7-4. To adapt this manual to your particular instrument, refer to Table 7-1 and make all of the manual changes listed opposite your instrument serial number. Perform these changes in the summary by assembly. - 7-5. If your instrument serial number is not listed on the title page of this manual or in Table 7-1 to the right, it may be documented in a yellow MANUAL CHANGES supplement. For additional information about serial number coverage, refer to INSTRUMENT COVERED BY MANUAL in Section I. Table 7-1. Manual Changes by Serial Number | Serial Prefix
or Number | Make Manual Changes | |----------------------------|---------------------| | 2136J00106
and below | 1 | | 2136J00124
and below | 2 | | 2022J00144
and below | 3 | | 2022J00264
and below | 4 | | | | | | | | | | Page 3-6, Figure 3-2: Partially change the figure as follows: Page 3-20, para. 3-62, line 4: Change the line as follows: logical 0 (right position) and logical 1 (left) Page 3-20, Figure 3-14: Change the figure as follows: Figure 3-14. HP-IB Control Switch. Page 3-20, Figure 3-15: Change the figure as follows: Figure 3-15. ADDRESSABLE Mode. # Page 3-21, Figure 3-16: Change the figure as follows: Figure 3-16. TALK ONLY Mode. Page 8-47, Figure 8-28. A2 ALC Amplifier Board Assembly Component Locations: Partially change the figure as follows: Page 8-47, Figure 8-29. A2 ALC Amplifier Board Assembly Schematic Diagram: Partially change the diagram as follows: Page 8-131, Figure 8-75. A20 Power Supply Board Assembly Component Locations: Partially change the diagram as follows: Page 8-131, Figure 8-76. A20 Power Supply Board Assembly Schematic Diagram: Partially change the diagram as follows: Table 6-3. Replaceable Parts: See Table 7-2. Page 8-53, Figure 8-31. V-Channel Amplifier Board Assembly Component Locations: Partially change the diagram as follows: Page 8-53, Figure 8-33. V-Channel Amplifier/A52 Probe V-Channel Board Assembly Schematic Diagram: Delete A3R40. Page 8-59, Figure 8-37. A4 I-Channel Amplifier/A51 Probe I-Channel Board Assembly Schematic Diagram: Table 6-3. Replaceable Parts: See Table 7-2. Page 8-77, Figure 8-46. A8 Crystal Oscillator Board Assembly Component Locations: Partially change the diagram as follows: Page 8-77, Figure 8-47. A8 Crystal Oscillator Board Assembly Schematic Diagram: Partially change the diagram as follows: Page 8-85, Figure 8-50. All Voltage Controlled Oscillator Board Assembly Component Locations: Table 6-3. Replaceable Parts: See Table 7-2. Page 8-85, Figure 8-51. All Voltage Controlled Oscillator Board Assembly Schematic Diagram: Page 8-131, Figure 8-75. A20 Power Supply Board Assembly Component Locations: Delete A20R27. Page 8-131, Figure 8-76. A20 Power Supply Board Assembly Component Locations: Delete A20 R27. Page 8-41, Figure 8-25. Al Sampling Pulse Generator Board Assembly Component Locations: Partially change the diagram as follows: Page 8-41, Figure 8-26. Al Sampling Pulse Generator Board Assembly Schematic Diagram: Table 6-3. Replaceable Parts: See Table 7-2. Page 8-131, Figure 8-75. A20 Power Supply Board Assembly Component Locations: Partially change the diagram as follows: Page 8-131, Figure 8-76. A20 Power Supply Board Assembly Schematic Diagram: Partially change the diagram as follows: Table 7-2 | Change | Dogo | Notes | Reference | НР | | |--------|------|-------|-------------|-------------|--------------------------------------| | Change | Page | Note | Designation | Part Number | Description | | l | 6-5 | С | A2C29 | 0160-4792 | CAPACITOR-FXD 8.2PF +5pF 100VDC CER | | | | A | A2L5 | 9100-2255 | INDUCTOR 470NH 10% | | | 6-6 | С | A2Q8 | 1854-0345 | TRANSISTOR NPN 2N5179 SI TO-72 | | | | С | A2R38 | 0683-3915 | RESISTOR 390 5% .25W | | | | С | A2R41 | 0683-6815 | RESISTOR 680 5% .25W | | | | D | A2W1 | 8159-0005 | JUMPER | | | 6-7 | С | A3R1 | 0683-4725 | RESISTOR 4.7K 5% .25W | | | | С | A3R5 | 0683-4725 | RESISTOR 4.7K 5% .25W | | | 6-18 | С | A8R12 | 0757-0816 | RESISTOR 681 1% .5W | | | 6-26 | A | AllS1 | 3101-4341 | SWITCH SLIDE SPDT-NG | | | 6-39 | D | A20R2 | 0698-7457 | RESISTOR 18 2% 2W | | | | D | A20R3 | 0698-7457 | RESISTOR 18 2% 2W | | | 6-40 | A | A20W1 | 8159-0005 | JUMPER WIRE | | | | A | A20W2 | 8159-0005 | JUMPER WIRR | | | 6-42 | С | 54 | 04193-66600 | HP-IB CONNECTOR | | 2 | 6-7 | С | A3R2 | 0683-5105 | RESISTOR 51 5% .25W | | | | С | A3R4 | 0683-5105 | RESISTOR 51 5% .25W | | | | С | A3R23 | 0699-0057 | RESISTOR 9K .1% .1W | | | 6-8 | D | A3R40* | 0757-0464 | RESISTOR 90.9K 1% | | | 6-9 | С | A4R1 | 0683-4275 | RESISTOR 4.7K 5% .25W | | | | С | A4R2 | 0683-5105 | RESISTOR 51 5% .25W | | | | С | A4R4 | 0683-5105 | RESISTOR 51 5% .25W | | | | С | A4R5 | 0683-4275 | RESISTOR 4.7K 5% .25W | | | | С | A4R27 - | No change | No change | | 3 | 6-39 | С | A20R26 | 0683-1025 | RESISTOR 1K 5% .25W | | | | D | A20R27 | 0683-1825 | RESISTOR 1.8K 5% .25W | | 4 | 6-4 | D | A1R26 | 2100-3212 | RESISTOR | | | | С | A1R27 | 0757-0442 | RESISTOR | | | 6-17 | С | A6C29 | 0160-2243 | CAPACITOR-FXD 2.7PF +25PF 500VDC CER | | | | С | A6C30 | 0160-2255 | CAPACITOR-FXD 8.2PF +25PF 500VDC CER | | | | С | A6C31 | 0160-2251 | CAPACITOR-FXD 5.6PF +25PF 500VDC CER | | | 6-39 | D | A20C19 | 0180-0291 | CAPACITOR-FXD 1UF 35VDC TA | | | | D | A20C20 | 0180-0291 | CAPACITOR-FXD 1UF 35VDC TA | | | 6-40 | D | A20U5 | 1826-0106 | IC V RGLTR 7815 | | | | D | A20W3 | 8159-0005 | JUMPER WIRE | A: Added D: Changed D: Deleted # SERVICE #### 8-1. INTRODUCTION 8-2. This section provides the information and instructions required to service the Model 4193A Vector Impedance Meter. Included are the Theory of Operation and Circuit Schematics. The Theory of Operation describes fundamental principles and circuit operating theory of the 4193A with block diagrams. Circuit schematics, locator illustrations, board level block diagrams and other technical data necessary for repairs are integrated into the service sheet foldouts. An illustration of the instrument interior is shown in Figure 8-19. #### 8-3. SAFETY CONSIDERATIONS 8-4. This section contains warnings and cautions that must be followed for your protection and to avoid damage to the instrument. ## WARNING MAINTENANCE DESCRIBED HEREIN IS PER-FORMED WITH POWER SUPPLIED TO THE INSTRUMENT AND PROTECTIVE COVERS RE-MOVED. SUCH MAINTENANCE SHOULD BE PERFORMED ONLY BY SERVICE-TRAINED PERSONNEL AWARE OF THE HAZARDS (FOR EXAMPLE, INVOLVED FIRE AND ELECTRICAL SHOCK). WHERE MAINTENANCE CAN BE PERFORMED WITHOUT POWER AP-PLIED, THE POWER SHOULD BE REMOVED. BEFORE ANY REPAIR IS COMPLETED, EN-SURE THAT ALL SAFETY FEATURES ARE INTACT AND FUNCTIONING AND THAT ALL NECESSARY PARTS ARE CONNECTED TO THEIR. MEANS OF PROTECTIVE GROUNDING. ## 8-5. THEORY OF OPERATION 8-6. The theory of operation discussion is organized into
two sections: basic theory and block diagram discussion. The basic theory, beginning with paragraph 8-13, explains the concepts and fundamental theory of the 4193A instrument technique adapted for accurately measuring the DUT and for fully achieving automated measurement performance. The block diagram discussion describes the overall circuit operating theory of the 4193A with block-to-block signal flow. Included are block and timing diagrams. # 8-7. RECOMMENDED TEST EQUIPMENT 8-8. The test equipment required to perform operations outlined in this section is listed in Table 4-1. The table includes type of instrument required, critical specifications, use, and recommended model. If the recommended model is not available, equipment which meets or exceeds the critical specifications listed may be substituted. ## 8-9. TROUBLESHOOTING 8-10. The troubleshooting guide provides instructions and information for locating a faulty circuit component. All instructions consider the safety of service personnal performing the procedures. The diagnostic guides are in the form flow diagrams. The board troubleshooting diagrams are used to isolate failures to an individual malfunctioning circuit board assembly. The guides for locating a defective component are given on the individual board service sheets and integrate service support data -- test point locations, waveform illustrations, voltage data, timing diagrams, and other technical information in addition to providing schematic diagrams for each board. To facilitate troubleshooting of the 4276A Digital Section, the troubleshooting guide for the logic cercuits uses signature analysis. #### Note To facilitate troubleshooting, remove all screws from the extrusion boards. ## 8-11. REPAIR 8-12. Repair explanations tell how to replace circuit defective components. The procedures recommended replacement for components and parts which require special repair, replacement tools, or test equipment should be observed. Correct disassembly and the exchange procedures for such special parts are outlined in paragraphs 8-81 through 8-91. To prevent damage resulting from improper repair procedure, refer to the appropriate manual section before proceeding with repair. #### 8-13. BASIC THEORY 8-14. The HP Model 4193A Vector Impdance Meter applies a constant test current to the DUT and measures two vector voltages, \dot{V}_{I} and \dot{V}_{V} , to obtain the DUT impedance, \dot{Z} . \dot{V}_{I} is the voltage drop across known resistance Ro, and \dot{V}_{V} is the voltage drop across the DUT. Refer to Figure 8-1. The vector current \dot{I} through Ro is proportional to the vector current \dot{I} through the DUT. Therefore, the vector impedance \dot{Z} of the DUT is given by the vector voltage ratio \dot{V}_{V} / \dot{V}_{I} as follows: $$\dot{Z} = \frac{\dot{V}_{V}}{\dot{I}} \propto \frac{\dot{V}_{V}}{\dot{I}^{T}} = \frac{\dot{V}_{V}}{\dot{V}_{I}/R_{0}} = R_{0} \cdot \frac{\dot{V}_{V}}{\dot{V}_{I}}$$ $$\therefore \dot{Z} \propto \frac{\dot{V}_{V}}{\dot{V}_{I}}$$ In the actual circuit, both the magnitude and the phase of each vector voltage are detected to calculate the magnitude ratio and the phase difference between \dot{V}_{V} and \dot{V}_{I} . The impedance and the phase of \dot{Z} are given below: $$|\dot{Z}| = k \cdot \frac{|\dot{V}_V|}{|\dot{V}_I|} (k: constant)$$ $\angle \dot{Z} = \angle \dot{V}_V - \angle \dot{V}_I$ Figure 8-2 shows the relation between $\dot{Z},~\dot{V}_{V}$, and \dot{V}_{T} Figure 8-1. Basic Block Diagram. The test frequency, RF, is a radio frequency between 0.4 to 110MHz. Therefore, sampling is performed in the VI and Vy detecting stage to facilitate accurate detection of the vector voltage ratio. The 4193A uses a unique sampling method called synchronized mixed-down sampling pulse generation. It enables the 4193A to perform stable sampling operation to convert RFmeasurement signals the into 9.765625kHz IF signals, even when the RF test frequency is changed. The relationship between the magnitudes of \dot{V}_{I} and \dot{V}_{V} and the phase differences between \dot{V}_{I} and \dot{V}_{V} remain unchanged, even after sampling. \dot{V}_{I} and \dot{V}_{V} are alternately measured to provide magnitude and phase information. Either \dot{V}_{I} or \dot{V}_{V} is selected and channeled into two paths; one to a magnitude-ADC through a full-wave rectifier and the other to a phase-ADC through the phase detector. The reference signal of the phase detector is $\dot{V}_{\rm I}$ and the input signal is alternately $\dot{V}_{\rm V}$ and $\dot{V}_{\rm I}$. This means that $\dot{V}_{\rm I}$ is phase detected in reference to itself in order to provide compensation for any phase offset error introduced by the detection circuits. In each of the two ADCs, dual-slope (type) analog to digital conversion is executed 17 times per measurement for $\dot{V}_{\rm V}$ and 12 times per measurement for $\dot{V}_{\rm I}$ in normal speed mode. See Figure 8-3. The 4193A contains a 6800 microprocessor that controls the frequencies, range selection, measurement sequence, data manipulation, and other functions. It also performs introspective testing of the 4193A. Figure 8-2. Relation between \dot{Z} , \dot{V}_V , and \dot{V}_I . Figure 8-3. Measurement Cycle. # 8-15. Analog Section Block Diagram Discussion 8-16. The following paragraphs describe the structure and functions of the 4193A's Analog Section. The Analog Section consists of the Signal Source, Sampling Block, and Detection Block. The block diagram of the Analog Section is shown in Figure 8-10. #### 8-17. SIGNAL SOURCE BLOCK 8-18. Figure 8-4 is the block diagram of the Signal Source, consisting of the A8 Crystal Oscillator, Alo Voltage Controlled Oscillator, A9 Mixer, A2 ALC Amplifier, A7 Divider, and All Integrator. The A8 Crystal Oscillator generates an accurate 100MHz signal which is used as the reference on the A6 board. The A8 board also outputs a 10MHz signal to the A7 Divider and a 300MHz signal to the A9 Mixer. The Al0 Voltage Controlled Oscillator outputs a 300MHz+RF to the A9 Mixer and the Mixer/Divider. The VCO on the Al0 board is controlled by the All Integrator, which phase-detects a reference signal from the A7 board and the RF test signal fed back from the A9 board. The A7 Divider has several functions. It divides down the RF test signal fed back from the A9 board for phase-detection on the All board, provides the reference signal for the phase-detector on the All board, provides PLL control, and provides a 2MHz clock signal and a 2.5MHz clock signal for various operations throughout the instrument. The A9 Mixer mixes the 300MHz+RF signal from the Al0 board with the 300MHz signal from the A8 board to provide the RF test signal. The A2 ALC Amplifier provides ranging and level control of the RF signal in order to maintain a constant RF current through the DUT. ## 8-19. A2 ALC AMPLIFIER 8-20. A2 board maintains the test signal current constant for each magnitude range. The PIN diode attenuator is controlled by the ALC voltage fed from the Al3 board and attenuates the RF test signal to a level appropriate for input to the amplifier stage. Depending on the magnitude range, the amplifier stage provides 10dB or 40dB amplification of the attenuated signal. When the magnitude range is $1k\Omega$, $10k\Omega$, or $100k\Omega$, the RF test signal is fed to a 30dB amplifier through two relays and then amplified by a 10dB output amplifier. For the lower magnitude ranges, the 30dB amplifier is bypassed and only the 10dB output amplifier is used. The two relays that feed the RF signal to the 30dB amplifier are controlled by the Al7 board. ## 8-21. A7 DIVIDER 8-22. The A7 board divides down the RF signal fed back from the A9 Mixer to provide a lkHz. $10\,k\,H\,z$, or $100k\,Hz$ signal, FV, for the phase detector on the All board. The N divisor is controlled by the microprocessor and is selected so that FV will be lkHz when the RF is less than 10MHz, 10kHz when the RF is 10MHz to 99.99MHz, and 100kHz when the RF is 100MHz or higher. A second signal, FR, which is used as the reference for the phase detector on the All board, is generated from the 10MHz signal from the A8 board or from an external oscillator. Like FV, FR is lkHz, 10kHz, or 100kHz depending on the RF frequency. To shorten the time required for the PLL to settle in response to large test frequency changes, two signals, FU and FD, are provided. FU also prevents the 300MHz+RF signal from dropping 300.4MHz. The A7 board also provides a 2MHz clock signal for the Al7 board and a 2.5MHz clock signal for the Al4 board, signal source ready signal (SSRDY), and external oscillator monitor signal (EXTOSC). ### 8-23. A8 CRYSTAL OSCILLATOR 8-24. The A8 board provides 10MHz, 100MHz, and 300MHz outputs which are used as reference signals in various mixing and phase-detection operations in the Signal Source and Sampling Circuit. All three signals are generated from the same 100MHz crystal oscillator. The 300MHz signal is derived from the third harmonic of the 100MHz signal. The 10MHz signal is produced by dividing down the 100MHz signal. ## 8-25. A9 MIXER 8-26. The A9 board has three functions: (1) mix the 300MHz+RF from the A10 board with the 300MHz reference from the A8 board to provide the RF signal for the A2 board, (2) feedback the RF signal to the A7 board, and (3) divide down the external oscillator signal (if present) before it is output to the A7 board. # 8-27. Al0 Voltage Controlled Oscillator 8-28. The Al0 board outputs a 300MHz+RF signal generated from a voltage-controlled oscillator. Control voltage for the oscillator is fed from the integrator on the All board. There are three frequency ranges: 300.4MHz to 309.999MHz, 310MHz to 399.99MHz, and 400MHz to 410MHz. The frequency range is determined by the FSI, FS2, and FS3 frequency select lines (from the All board), which are the result of decoding the 2-bit frequency range data from
the Al7 board. ## 8-29. All INTEGRATOR 8-30. The All board provides two control signals, VCS and frequency range select (FSI, FS2, FS3), for the voltage-controlled oscillator on the Al0 board. VCS is the control voltage for the VCO, and is produced by a phase-detector and an integrator in response to differences between the phase-detector's reference signal, FR, and input signal, FV. The reference, FR, is lkHz, 10kHz, or 100kHz depending on the frequency range, and is derived from the 10MHz signal output from the A8 board to the A7 board, where it is divided down to the appropriate frequency. The phase-detector's input signal, FV, is also lkHz, 10kHz, or 100kHz depending on the frequency range, and is derived from the RF signal fed back from the A2 board to the A7 board, where it is divided down to the appropriate frequency. When the FREQUENCY CONTROL DIAL on the front-panel is rotated, the microprocessor detects this and changes the value of the divisor used to divide down the RF This causes the signal on the A7 board. frequency of FV to be higher or lower (depending on which direction the dial is rotated) than that The phase-detector detects difference and closes one of two analog switches, allowing the integrator to charge (or discharge) from a +5v (-5V) voltage source. The output voltage from the integrator is the control VCS, for the voltage, voltage-controlled oscillator on the AlO board. When a large frequency change is detected, the FU (frequency up) or FD (frequency down) signal goes LOW. closing two FET switches. With these switches closed, the integrator charges (discharges) more rapidly, shortening the time required to settle the signal source at the new frequency. FB0 and FBI are sent from the Al7 board and control the frequency range of the voltage-controlled oscillator on the All board. FBO and FBI are decoded into three signals-FS1, FS2, and FS3-and then output to the All board. Figure 8-4. Signal Source Block Diagram. ## Signal Source Operation The frequency of the RF signal output from the 4193A's signal source is controlled by the $\div N$ circuit on the A7 board. This circuit consists of a two-modulus prescaler and four programmable counters. Refer to the block diagram in Figure A. When the signal source is locked (NOT READY lamp off) at the frequency displayed on the front-panel, the N circuit outputs a stable lkHz, l0kHz, or l00kHz signal, Fv, which is fed to the input of the phase detector on the All board. Since the phase detector's reference signal, FR, is also lkHz, l0kHz, or l00kHz, the phase detector outputs a constant VCO control voltage; thus, the RF signal stays at the selected test frequency. If the RF should drift, even slightly, from the selected test frequency, FV will change, causing the phase detector to increase or decrease the VCO control voltage until the RF returns to the selected frequency. The frequency of the phase detector's reference signal, FR depends on the range of the selected test frequency. Table A. Test Freq. vs FR | Test Freq. (MHz) | FR | |------------------|--------| | .400 to 9.999 | 1kHz | | 10.00 to 99.99 | 10kHz | | 100.0 to 110.0 | 100kHz | Figure A. Signal Source Simple Block Diagram. When the FREQUENCY DIAL on the front-panel is rotated, the microprocessor changes the value of the N divisor. Consequently, FV changes, causing the phase detector to increase or decrease the VCO control voltage until the signal source settles at the new frequency. As an example, let's assume that the signal source is stable at a selected test frequency of $400 \, \text{kHz}$. FR, then, is lkHz and the N divisor must be 400 to obtain the requisite lkHz FV $(400 \, \text{k}/400 = 1 \, \text{k})$. Now, if the test frequency is changed to, say, $401 \, \text{kHz}$ by rotating the FREQUENCY DIAL, the microprocessor will change the N divisor to 401. Since the test signal at this time is still $400 \, \text{kHz}$, FV will be $400 \, \text{kHz}/401$, or $997.51 \, \text{Hz}$. There is now a difference of $2.49 \, \text{Hz}$ between FV and FR. The phase detector detects this difference and adjusts the VCO control voltage until the test signal is $401 \, \text{kHz}$, at which time FV will return to $1 \, \text{kHz}$ ($401 \, \text{k}/401 = 1 \, \text{k}$). Figure 8-5. Signal Source Operation (Sheet 1 of 2). #### * N Circuit The $\div N$ circuit (see Figure B) functions as a programmable 4x4-bit BCD decade up-counter. The count starts at the value of N and continues until the maximum count of the counter, 9999, is reached, at which time one count cycle is completed and one pulse is output. N is the four-digit 9's complement of the number of counts on the FREQUENCY display. For example, if the test frequency is set to 400kHz, the number of counts on the FREQUENCY display is 400. The four-digit 9's complement of this number is calculated as Some frequencies, lMHz, l0MHz, and l00MHz, for example, have the same N divisors. This means that FV will be lkHz, l0kHz, and l00kHz, respectively, as will FR (see Table A). This is true for all test frequencies that have the same number of display counts. #### Two-Modulus Prescaler The prescaler in the \div N circuit operates in one of two modes, \div 10 or \div 11, depending on the state of the Scaler Control Line. When the line is HIGH, the prescaler operates in the \div 10 mode; and when the line is LOW, in the \div 11 mode. Initially, the Scaler Control Line is LOW, setting the prescaler to the \div 11 mode and enabling the D counter. When the D counter reaches maximum count, 9, the Scaler Control Line goes HIGH, setting the prescaler to the \div 10 mode and disabling (stopping) the D counter. The content of the ABC counter at this time is 100A + 10B + C - D. The total number of input pulses required to output one pulse from the \div N circuit is calculated as $$9999 - (11D + 10(100A + 10B + C - D)) = 9999 - 1000A - 100A - 10C - D$$ where A, B, and C are the three most significant digits of the N divisor and D is the least significant digit. At the end of one cycle the output pulse is fed back to the counters and the prescaler to reset the entire circuit. N:1000 A + 100B + 10C + D Figure B. ÷N Circuit. Figure 8-5. Signal Source Operation (Sheet 2 of 2). #### 8-31. SAMPLING BLOCK 8-32. The Sampling Circuit consists of the Al Sampling Pulse Generator, A5 Mixer/Divider, A6 Voltage Controlled Oscillator, A51 Probe I-channel, and A52 Probe V-Channel. Overall Sampling Circuit operation will be discussed first, followed by simplified board level discussions. 8-33. Refer to the Sampling Circuit block diagram in Figure 8-6. Two RF signals, V_{DUT} (RF) and I_{DUT} (RF), which represent the voltage across and the current through the DUT are each converted into a 9.765625kHz IF to facilitate measurement. RF-to-IF conversion is performed in the A51 Probe I-Channel and the A52 Probe I-Channel by sampling the injected RF signal at different points of the waveform. This produces two waveforms, V_{DUT} (IF) and I_{DUT} (IF), whose relative amplitudes and relative phase are identical to those of the original RF signals, but at a frequency more convenient for measurement. A 100MHz reference from the A8 board and a 2IF (19.53125kHz) from the Al4 board are input to the phase-locked loop on the A6 board which outputs an accurate 300MHz-IF (299.990MHz) signal. This 300MHz-IF is output to the A5 board where it is mixed with a 300MHz + RF from the Al0 board. The mixer output is filtered, leaving only an RF + IF signal, and then amplified, clipped, and divided down to provide the appropriate RF + IF/N sampling frequency. The output from the A5 board is sent to the Al Sampling Pulse Generator where it is amplified to drive a step-recovery-diode, and then input to two differentiators to provide the required pulse height and width. The I-Channel and V-Channel Sampling pulses are identical except that the V-Channel sampling pulse is slightly delayed in reference to the I-Channel sampling pulse. The and A4 boards each provide complementary sampling pulses for their respective channel. ### 8-34. Al SAMPLING PULSE GENERATOR 8-35. The Al board outputs the sampling pulses required for the sampling operations in the I and V channels. For maximum sampling efficiency, the pulses must have an extremely short rise time. To accomplish this, the Al board has a step recovery diode (SRD), strip-inductor, forward current source, SRD driver, and two differentiators. The forward current source turns on the SRD and stores a charge in the SRD. The SRD driver circuit reverse biases the SRD with a periodic square wave whose frequency is (RF+IF)/N. The SRD allows reverse bias current to momentarily flow and it snaps off as soon as the stored charge is lost. The waveform across the SRD is, thus, a square wave with very sharp leading edge. This signal is then applied to two differentiators which provide the sampling pulses for the I channel and V channel respectively. ### 8-36. A51 PROBE I-CHANNEL 8-37. The RF current through the DUT is detected by a toroid current transformer shunted by a 50Ω resistor. The resulting voltage drop across the shunt resistor is applied to a four-diode sampling gate which is controlled (opened and closed) by two complementary sampling pulses. When the diodes are forward biased by the sampling pulses, the gate is open for approximately 700ps. During this time, the instantaneous voltage across the 50Ω shunt resistor charges a capacitor, where it is held until the next sample is taken. Because the sampling pulses are so short, the capacitor can only charge to approximately 70%. To improve sampling efficiency to between 90% and 100%, IF feedback is used. ## 8-38. A52 PROBE V-CHANNEL 8-39. The RF voltage across the DUT is applied to a four-diode sampling gate which is controlled (opened and closed) by two complementary sampling pulses. When the diodes forward-biased by the sampling pulses, the gate is open for
approximately 700ps. During this time, the instataneous RF voltage across the DUT charges a capacitor, where it is held until the next sample is taken. Because the sampling pulses are so short, the capacitor can only charge to approximately 70%. To improve sampling efficiency to between 90% and 100%. IF feedback is used. # 8-40. A5 MIXER/DIVIDER 8-41. The A5 board has two functions: (1) mix the 300MHz-IF from the A6 board with the 300MHz+RF from the Al0 board to produce an RF+IF signal and (2) divide the RF+IF by Ns. The double-balanced mixer hetrodynes the two input signals, producing a 300MHz-IF, 300MHz+RF, 600MHz+RF-IF. and RF+IF. The higher-frequencies are blocked by a 120MHz low-pass filter, leaving only the RF+IF, which is then amplified and squared for input to the Ns divider. The Ns divisor is selected by the microprocessor, and, depending on the frequency of the test signal (RF), will have a value from 1 to 44. After division, the sampling signal, (RF+IF)/Ns, is input to a transfer buffer for output to the Al Sampling Pulse Generator. ## 8-42. A6 Voltage Controlled Crystal Oscillator 8-43. The A6 board is the initial stage of the Sampling Circuit. It produces the requisite 300MHz-IF reference signal for the mixer on the A5 board. The phase-locked loop on the A6 board outputs a precise 100MHz-IF/3 signal which is converted into the 300MHz-IF signal by a tripler and a 300MHz BPF. Figure 8-6. Sampling Block Diagram. ## Synchronized Mixed Down Sampling Pulse Generation In conventional sampling circuits, a phase locked loop is usually used to generate a sampling signal whose frequency must be (RF+IF)/N, where N is a positive integer, as shown in Figure A. It takes time to lock the PLL when the test frequency is changed. In the 4193A, however, a mixing down method using no feedback loop and no presampling is used to generate the sampling pulses as shown in Figure B. Two signals, a 300MHz + RF and a 300MHz-IF, are used to generate the sampling signal. They are mixed to produce an RF+IF signal and converted to RF+IF/N by a frequency divider, the denominator N is determined by the logic control board. Therefore, the sampling pulse frequency is fixed at RF+IF/N even if the test frequency is changed, which is the determinant of stable sampling in RF test frequency changes. This feature enables the 4193A to sweep the RF test frequency is the wide frequency range from 0.4 to 110MHz. Figure A. Phase Locked Loop Method. Figure B. Mixing Down Method. ### Sampling Pulses Figure A shows the sampling pulses applied to the V-Channel and I-Channel samplers. Normally, the sampling diodes are reverse biased by 3.8 volts. To turn the sampling diodes fully on and, thus, maximize sampling efficiency, the height of the sampling pulses is 4.5 volts (in reference to the reverse bias voltage). Sampler on-time, when all diodes are conducting, is approximately 700 picoseconds. Sampling pulse height at the output of the Al SPG is approximately 24 volts, which is attenuated to the requisite 4.5 volts by the transmission paths. Figure A. Sampling Pulses. To eliminate inter-channel interference, sampling in the V-Channel is delayed 2.2 nanoseconds in reference to sampling in the I-Channel. The phase error caused by this delay is compensated for by the logic section. Delay is introduced by the A4l Delay Line (on the Al board) and the cable between AlPl and A3P2. The delay line causes a 1.2 nanosecond delay and the cable causes a l nanosecond delay. Figure B. Sampling Delay Time (at Samplers). Figure 8-8. Sampling Pulses. ## 8-44. DETECTION BLOCK 8-45. The Detection Block consists of the A3 V-Channel, A4 I-Channel, A12 IF BPF, A13 Detector, and A14 ADC. Overall operation is as follows. Two IF signals, one representing DUT current (Ich) and one representing DUT voltage (Vch), are fed from the probe to the A3 and A4 boards where they are amplified and attenuated in accordance with the magnitude information provided by the Al7 board. The Al2 board is divided into two channels: I channel and V/I channel. The I channel continuously outputs the Ich signal to the control circuit on the Al3 board where it is used for ALC feedback, and range control. The V/I channel is identical to the I channel except that it contains an analog switch. This switch is controlled by a signal from the Al4 board and it alternately selects the incoming Ich and Vch signals for output to the magnitude and phase detection circuits on the Al3 board. Since the Ich and Vch signals are both fed through the V/I channel to the detection circuits, no measurement error results. Also, any error introduced by the I channel is detected during phase detection (the Ich signal is phase detected in reference to itself) and compensated by the microprocessor. On the Al3 board, the Ich signal fed from the I channel on the Al2 board is rectified and squared for use as the reference in the phase detector. The rectified Ich signal is also applied to an integrator whose output is used for automatic level control and magnitude range control. The V/I signal (this signal is either Ich and Vch) fed from the Al2 board is input to the magnitude detector and the phase detector. Detected magnitude and phase are then output to the Al4 board. The Al4 board contains two AD converters, one for magnitude and one for phase. The integrator outputs-- \dot{V}_{V} magnitude, \dot{V}_{I} magnitude, \dot{V}_{V} phase, and \dot{V}_{I} phase--are sent to the Al7 board. ## 8-46. A3 IF V-CHANNEL AMPLIFIER 8-47. The A3 board has three functions. One is to convert the sampling pulse fed from the A1 board into two complementary sampling pulses. The second is to provide IF feedback and reverse DC bias to the V-Channel sampling diodes in the probe. IF feedback stabilizes the sampling operation and raises sampling efficiency. The third is to attenuate the IF signal by 1, 10, 100, 500, or 1000. The amount of attenuation is determined by the selected magnitude range. #### 8-48. A4 IF I-CHANNEL AMPLIFIER 8-49. The A4 board has three functions. One is to convert the sampling pulse fed from the A1 board into two complementary sampling pulses. The second is to provide IF feedback and reverse DC bias to the I-Channel sampling diodes in the probe. IF feedback stabilizes the sampling operation and raises sampling efficiency. The third is to amplify the IF signal by 4, 8, or 40. The amount of amplification is determined by the selected magnitude range. This board also contains a phase-shifter which prevents synchronization error between the I-Channel and V-Channel. ### 8-50. Al2 IF BPF 8-51. The Al2 board is the first IF detection stage, and it has two functions. The first is to amplify and filter the I-Channel IF signal from the A4 board. This signal is then output to the Al3 board, where it is converted into the ALC signal, RANGE UP signal, and RANGE DOWN signal. The second function is to alternately select the I-Channel and V-Channel signals, amplify and filter them, and then output them to the Al3 board, where they are phase detected and rectified for measurement. Selection is made by two analog switches which are controlled by the Imeas and Vmeas signals from the Al4 board. The amplifiers used in both functions are identical, as are the bi-quad type filters. #### 8-52. All DETECTOR 8-53. The Al3 board is the second IF detection stage and has two main functions: phase detect the Vch signal in reference to the Ich signal and rectify and output the Vch and Ich signals to the Al4 board for measurement. The Ich and V/I signals fed from the Al2 board are each squared and input to one half of a dual one-shot The duty multivibrator. cycles of multivibrator's outputs are identical determined by two RC networks connected to the multivibrator. The multivibrator outputs are connected to the inputs of an RS flip-flop that outputs a pulse whose width is proportional to the phase difference between the two inputs. This pulse controls an analog switch which provides the PHASE+ and PHASE- signals to the phase A/D converter on the Al4 board. The V/I signal is actually two signals, Ich and Vch, alternately selected on the Al2 board for output to the Al3 board. This Ich signal is identical to the Ich signal used as the reference in the phase detector. When the V/I signal is the Ich signal, it is phase detected in reference to the other Ich signal in order to measure any phase offset error that may have been introduced. This offset error is subtracted from the measured DUT phase to ensure measurement accuracy. The V/I signal is half-wave rectified into two signals, MAG+ and MAG-, which are output to the magnitude integrator on the Al4 board. The Ich signal used as the reference in the phase detector is also used to provide ALC control voltage for the PIN diode attenuators on the A2 board and to provide the RNG UP and RNG DN signals. ## 8-54. Al4 Analog-to-Digital Converter (ADC) 8-55. The Al4 board contains two A/D converters, one for magnitude measurement and one for phase measurement. The magnitude (phase) integrator is charged for a constant period, Tl, by a differential input voltage, MAG+ MAG- (PHASE+ + PHASE-), and is then discharged by a +2V reference, VREF. The time required to discharge the integrator is proportional to the input voltage and is measured (counted) by the A/D converter's internal control logic. The measurement result consists of 14 bits--12 bits for measurement data, I bit for over-range, and I bit for polarity-and is output to the Al7 board via an 8-bit parallel data bus in a 6-bit parallel then 8-bit parallel fashion. The 6-bit data consists of the over-range bit, polarity bit, and the four high-order bits; the 8-bit data consists of the eight low-order bits. The 2.5MHz clock signal from the A7 board is divided down to a 156.25kHz signal and a 19.53125kHz signal. The 156.25kHz signal is used as the clock for both A/D converters, and the 19.53125kHz signal, which is 2IF, is fed back to the A6 board. The Al4 board
also controls I-Channel/V-Channel selection on the Al2 board. Figure 8-9. Detection Block Diagram. | | ı | | | |--|---|--|--| | | | | | | | | | | Figure 8-10. Analog Section Block Diagram. 8-56. Digital Section Block Diagram Discussion 57. The following paragraphs describe the structure and functions of the 4193A's Digital Section. ## 8-58. Als ANALOG OUTPUT 8-59. Twelve-bit data representing one of the displayed values--frequency, impedance, or phase--is output from the Al7 board via an 8-bit parallel data bus (IOB0 ~ IOB7) in a 4-bit/8-bit serial pattern; that is, the data is sent in two parts: first the 4 MSBs, and then the 8 LSBs. The 4 MSBs are stored in Ul5, and the 8 LSBs are stored in Ul6 and Ul7. RAM selection is controlled by the R/\overline{W} , $\phi 2$, AB2, and IOG7 signals applied to U6. When the 4 MSBs are being sent, U6 pin 6 is LOW and pin 8 is HIGH, write-enabling Ul5 and write-disabling Ul6 and U17. Conversely, when the 8 LSBs are being sent, U6 pin 6 and pin 8 change states, write-disabling U15 and write-enabling U16 and U17. The write-address is determined by the ABO and ABI signals. Thus, 12 bits, representing one of the three displayed values, are stored in U15, U16, and U17. This process is repeated for each of the other displayed values. After the three displayed values have been stored, each is read by the DAC JUII), which converts the 12-bit data into an analogous dc voltage. The read-address is determined by two signals output from U2. The DAC output, AOUT, is input to a 1-of-4 demultiplexer, consisting of U9, U10, and U12, which selects the correct output channel—FOUT for frequency, ZOUT for impedance and ϕ OUT for phase. A voltage buffer (U19) is connected to each of U12's outputs. U18 is an adjustable negative—gain amplifier whose output is connected to the RECORDER OUTPUTS on the rear-panel. The lMHz $\not=2$ clock signal is divided down by Ul and U2 to a 7.8kHz signal and a 3.9kHz signal which are used to drive the demultiplexer and to provide the read-address. U7 and U8 provide appropriate delay to allow the DAC to settle. U4 and U5 provide a TTL level pen lift control signal from the PEN LIFT connector on the rear-panel. #### 8-60. Al6 HP-IB 8-61. All HP-IB functions and data transfer operations between the 4193A's microprocessor and an external controller or "listen-only" device are managed by U2, a general purpose interface bus. When the 4193A is turned on, \overline{PON} (power on) and \overline{ASE} (address switch enable) go LOW, clearing all registers in U2 and enabling U1. With U1 enabled, the 4193A's HP-IB address, set by the 7-bit DIP switch on the rear-panel, is sent to the microprocessor to be displayed on the front-panel and to U2 to be stored in the address register. After the address has been stored, \overline{ASE} goes HIGH, disabling U1. U2 has sixteen registers: eight for write operations and eight for read operations. One write register and one read register are used for direct data transfer operations. The remaining seven write registers are used for chip control, and the remaining read registers are used by the microprocessor to monitor HP-IB status and bus conditions. Register addressing is controlled by the $R/\overline{W},\ ABO,\ ABI,\ AB2,\ \phi2,\ and\ \overline{IOG6}$ signals from the microprocessor. Command and data transfer between the 4193A and the external device is via a 16-line bus. Eight lines, DIOI through DIO8, function as a bidirectional data bus; three lines—NDAC, NRFD, and DAV—are for data byte transfer control; and five lines—EOI, SRQ, REW, IFC, and ATN—are for general interface management. ## 8-62. Al7 CONTROL LOGIC 8-63. The microprocessor is driven by a single 2MHz TTL-level clock (MPUCLK) from the A7 board. MPUCLK is first divided down to 1MHz by U16A and then input to a flip-flop consisting of U13A/C and U14A/B/E. The flip-flop outputs two complementary 1MHz signals, one for DBE (data bus enable) and ϕ 1, and the other for ϕ 2. Q1 and Q2 square the pulses before input to the microprocessor. DBE and ϕ 1 are used by the microprocessor only; ϕ 2, however, is used by the microprocessor and other digital circuits. When the instrument is turned on, the \overline{RESET} signal from the A20 board is held LOW for 500 to 700ms, to reset the microprocessor. When \overline{RESET} goes HIGH, execution of a routine to initialize the microprocessor from its reset condition is started. The microprocessor has two busses, an 8-line bidirectional I/O bus and a 16-line address bus. The I/O bus, IOBO through IOB7, carries measurement data and control signals between the microprocessor and the Al4, Al5, Al6, and Al8 boards. It also functions as a memory bus, MBO through MB7, for transferring measurement data between the microprocessor and the RAMs, and for accessing programs stored in the ROMs. The address bus, ABO through ABI5, is used for RAM/ROM addressing. Four of the address bus lines, AB0 through AB3, are also used for various control and addressing functions on the Al4, Al5, Al6, and Al8 boards. Memory consists of two RAMs and five ROMs. The RAMs store intermediate results of calculations performed by the microprocessor, and the ROMs contain the instrument's various control programs. #### 8-64. Al8 DISPLAY/KEY CONTROL 8-65. The Al8 board is divided into three sections: Display RAM/Address Counter, Display, and Frequency Control Dial/Key Control. In the Display RAM/Address Counter section, address information and data to be displayed are received from the Al7 board via the 4-line address bus (ABO - AB3) and the 8-line IO bus (IOB0 - IOB7). When U12 pin 8 goes LOW, the address on the address bus is loaded into the Address Counter (U8), which then begins counting from the loaded address. Counting is controlled by the Ul/U22 clock. The output from the Address Counter is sent to the select inputs of the 4X32-bit Display Data RAM (U9, U10) and to the inputs of the Anode Driver (U2). At the same time that the address is loaded into the Address Counter, 8-bit data on the IO bus is stored into the Display Data RAM and output to the Cathode Driver for display on the 7-segment common anode displays. The address counter continues counting, selecting stored data to be displayed, until Ul2 pin 8 goes LOW again, at which time a new address is loaded and the data stored in the RAM is updated. The clock circuit--consisting of Ul, U3, U4, a U22-provides address-count control and display strobe. In the Display section, 8-bit display data is output from the RAM and directly applied to the inputs of the Cathode Driver, which consists of resistor network R19 and transistors Q16 through Q23. The outputs of the Cathode Driver are connected to the cathodes of the 7-segment displays and all key indicator lamps. NOT READY, EXT OSC, TRIGGER, and HP-IB status lamps are controlled microprocessor via an 8-bit register, U19. The Anode Driver, U2, is a 4-line to 1-of-16-line decoder. The outputs from the Address Counter are connected directly to the address inputs of U2, which decodes the address into 16 mutually exclusive outputs. A LOW at one of these outputs turns on the corresponding driver transistor, Ql through Ql5, turning on the corresponding 7-segment display or key indicator lamp(s). In the Frequency Control Dial/Key Control section the twenty-three front-panel keys are divided into three groups—two groups of eight and one group of seven-for connection to the three 8-line-to-3-line priority encoders (U5, U6, and U7). All keys are of the normally-open pushbutton type. When no key is pressed, all encoder inputs are held HIGH through resistor networks R26, R27, and R28. Encoder outputs at this time are all HIGH. When a key is pressed the corresponding encoder input goes LOW, causing the encoded key address to appear at the outputs of Ul6 (A, B, C) and the key-group (U5, U6, U7) address to appear at the outputs of U15 (A, B), and forcing the KEYINT line to go LOW. When KEYINT goes LOW, 5-bit data representing the key address (3 bits) and the key group address (2 bits) is stored in an 8-bit register (Ul8), the microprocessor clears the IO bus and sends a READ signal to Ul8. The key address data is then output onto the IO bus to be processed by the microprocessor. When the Frequency Control Dial is rotated the RPGINT line goes LOW, instructing the microprocessor to examine the level of the RPGUD line. If RPGUD is HIGH, the microprocessor increases the test frequency by a constant factor determined by the selected FREQUENCY RESOLUTION key; if RPGUD is LOW, the microprocessor decreases the test frequency. Figure 8-11. Digital Section Block Diagram. Figure 8-12. Measurement Sequence Flow Diagram. #### 8-66. OVERALL MEASUREMENT SEQUENCE 8-67. All instrument functions are controlled by the microprocessor on the A17 board in accordance with the programs stored in the five 2k byte ROMs. The basic measurement cycle is shown in Figure 8-12. When line 14 of the address bus (AB14) goes HIGH, the ROM whose address appears on AB11 through AB13 is selected and the program instruction at the address appearing on AB0 through AB10 is read into the microprocessor via the 8-line memory bus, MB0 through MB7. The I/O bus is disabled at this time. 8-68. For data transfer between the microprocessor and the instrument's various circuits, there are seven mutually exclusive I/O control lines, IOG1 through IOG7. Refer to Table 8-1 for the function of each. Selection is made by the microprocessor via ABII through ABI4, as shown in Figure 8-13. When AB14 goes LOW, the decoder is enabled, selcting one of the I/O control lines, IOG1 through IOG7, or the RAM select line, RAMSLCT, in accordance with the address on AB11 through AB13. Refer to Table 8-2. 8-69. IOG7 is used for X-Y RECORDER analog output. It, along with ABO and ABI, controls PEN LIFT output and data transfer from the microprocessor to the RAMs on the Al5 board. When the instrument's X-Y RECORDER function
is set to on, the digital data representing the number of counts displayed on the MAGNITUDE, PHASE, and FREQUENCY displays are successively converted into dc voltage by the DA converter and output to the appropriate rear-panel connector. 8-70. IOG6 is used for HP-IB operation. When this line goes LOW, the read/write registers in the HP-IB chip, A16U2, are enabled, as is bidirectional data transfer between the remote device and the microprocessor. ABO through AB2 control addressing of the on-chip registers. 8-71. IOG5 is used by the microprocessor to monitor internal control signals—ADCINT, BUSINT, KEYINT, RPGUD, RPGINT, EXTRIG, RNGUP, RNGDN, SSRDY, EXTOSC, and R IN—via the I/O bus. It is also used to read the HP-IB address control switch and to clear the external trigger flip-flop. 8-72. I0G4 is used for AD conversion of magnitude and phase on the Al4 board and for transfer of the l4-bit magnitude and phase data to the microprocessor. It also control I-channel/V-channel selection on the Al2 board. 8-73. I0G3, along with AB0 through AB2, is used for magnitude and frequency ranging, Ns control, and frequency control. It sends frequency band signals, FB0 and FB1, to the All board to control the output range of the VCO; frequency range signals, FR0 and FR1, to the A7 board to control the frequency of FV; N divisor signals, F01 to F38, to the A7 board to control frequency; Ns signals, NS1 through NS6, to the A5 board to control the sampling frequency; magnitude range signals, ZR1, ZR2, ZR4, ZR5, to the A3 and A4 boards to control magnitude range; and a phase range signal, R, to the A13 board to select phase range (0° to ±90° or ±90° to 180°). 8-74. IOG2 controls LED lamps and control keys on the front-panel. 8-75. IOG1 controls the 7-segment displays and LED's on the front-panel. Table 8-1. I/O Group Functions | I/O Group | Functions | |-----------|----------------------| | I 0G7 | X-Y Recorder Outputs | | 10G6 | HP-IB | | 10G5 | Status Input | | 10G4 | ADC | | 10G3 | Internal Control | | IOG2 | Front-Panel Control | | I0G1 | Display Control | Table 8-2. Address Assignments | ' | Address (AB15 - AB0) | | | | | | Note | | |------------|----------------------|----|----|----|----|----|------|-----------| | 1 | 15 | 14 | 13 | 12 | 11 | 10 | 9-0 | Note | | | - | 1 | 1 | 1 | 1 | х | х | A17U7 | | | - | 1 | 1 | 1 | 0 | x | х | A17U6 | | ROMs | - | 1 | 1 | 0 | 1 | x | х | A17U5 | | | - | 1 | 1 | 0 | 0 | х | х | A17U4 | | | - | 1 | 0 | 1 | 1 | х | х | A17U3 | | | - | 0 | 1 | 1 | 1 | х | х | IOG7 | | | - | 0 | 1 | 1 | 0 | х | х. | I0G6 | | ļ | - | 0 | 1 | 0 | 1 | х | х | I 0G5 | | I/O Groups | - | 0 | 1 | 0 | 0 | х | х | I0G4 | | 1 | - | 0 | 0 | 1 | 1 | х | х | I 0G3 | | | - | 0 | 0 | 1 | 0 | х | х | I0G2 | | | - | 0 | 0 | 0 | 1 | х | х | I0G1 | | RAMs | - | 0 | 0 | 0 | 0 | - | х | A17U1, U2 | -: Not used x: Irrelevant Figure 8-13. IOG Lines. SECTION VIII ## 8-76. TIMING DIAGRAM DISCUSSION 8-77. When IOG4 goes LOW, the RUN/HOLD signals in both magnitude and phase ADCs go HIGH to start AD conversion. Measured signals supplied to these two ADCs are selected by the V/IMEAS signal, which controls the selection switch on the Al2 board. When V/IMEAS is LOW, the V-Channel signal is input into the ADCs; when it is high, the I-channel signal is selected. Each time the instrument is turned on. or when the trigger is set to MAN/EXT, V/IMEAS is set LOW or held LOW. When RUN/HOLD goes HIGH, the integrator outputs, MI and PI, are offset by the INL inputs. See Figure 8-14. But when the end of the integration period, which is equivalent to 2048 counts of the CLOCK, is reached, the integrator offset voltages are rejected because INL inputs are isolated from the integrator inputs. The integrator discharge period, when the integrated voltage is discharged by the reference dc voltage (+2Vdc), continues until the integrator output voltage reaches zero volts. This period is counted by the on-chip counter, and the number of counts is proportional to the differential voltage between INH and INL. In V measurement mode, AD conversion is repeated 17 times (normal mode) or once (high speed mode) per one trigger. In I measurement mode, AD conversion is repeated 12 times (normal mode) or once (high speed mode) per one trigger. Before each conversion an auto zero operation is performed to reject any internal offset error. The first auto zero operation occurs after the first AD conversion for V measurement. That is, auto zero is not performed for the first conversion. 8-78. RUN/HOLD goes LOW when the last of the two AD conversions is completed. Before the first conversion is performed, there is a period for reading the control signals and for setting all controls. The length of this period depends on instrument status; if there are no control setting changes, it is 2.5msec. 8-79. In the I measurement cycle, the output of the PHASE ADC, PI, is nearly a square wave because the phase difference between the I signals in I channel and V/I channel is approximately zero degrees. 8-80. The STATUS signal represents the ADC status. It is HIGH when conversion is in progress, and LOW when not in progress. Each time both STATUS signals go LOW, INT signal is generated and fed to A17 board to perform ADC interrupt operation which has several functions: stores ADC data, calculates magnitude and phase data, and calibrates the calculated values with phase shift and frequency characteristics. Figure 8-14. Integrator Output. 8-17 Figure 8-15. Timing Diagram. ## 81. PROBE REPAIR 8-82. When an instrument failure is isolated to the A51 board or the A52 board (inside the probe), replace all four sampling diodes (HP Part No.: 1901-0518) on the board. If the failure persists, replace the entire board. Probe disassembly is described in paragraph 8-84. 8-83. If the probe cable is damaged, replace the entire probe assembly (HP Part No.: 04193-61152). #### 8-84. PROBE DISASSEMBLY 8-85. To access the A51 and A52 boards inside the probe, use the procedure given below. Refer to Figures 8-16 and 8-17. - l. Loosen the coupling nut labelled (1) in Figure 8-16. - 2. Unscrew the barrel 2, and remove it from the probe. The 3-section brass housing secured by six phosphor-bronze rings will be visible. - 3. Place the probe in the vise (2) as shown in Figure 8-17. The ring closest to the probe tip must be inserted into chuck B, and the groove between the first and second rings must inserted into chuck A. - 4. Slowly turn the vice handle counterclockwise until the ring is clear of the probe. Remove the ring and the probe from the vise chucks. - 5. Place the probe in the vise so that the probe tip is pointing toward the vise handle (opposite from step 3). The second ring must be inserted into chuck B and the groove used in step 3 must be inserted into chuck A. - 6. Slowly turn the vice handle counterclockwise until the ring is loose. - 7. Remove the probe from the vise and slide the first section of the brass-housing 3 off the probe. #### CAUTION WHEN REMOVING THE BRASS-HOUSING, USE HAND PRESSURE ONLY. DO NOT USE PLIERS OR SIMILAR TOOLS. 8. Repeat steps 3 through 7 for the remaining two sections, 4 and 5. Figure 8-16. Probe. Figure 8-17. Probe Assembly. #### 8-86. PROBE ASSEMBLY 8-87. To reassemble the probe, use the procedure given below. Refer to Figure 8-17. Using hand pressure, slide one ring onto each end of each section of the brass-housing. #### Note When reassembling the probe, use new rings (HP Part No.: 04193-21016). Do not reassemble using the old rings. #### Note The inner surface of each ring is tapered to match the taper of the brass-housing. The rings must be inserted in the correct direction to insure proper seating. - 2. Slide the section labelled (5) in Figure 8-17 onto the probe until flush against the stop. - 3. Place the probe in the vise so that the ring nearest the stop is inserted into chuck B and the groove at the center of the section is inserted into chuck A. - Close the vise until the ring is fully seated. - 5. Repeat steps 2 through 4 for the remaining two sections, (3) and (4). - 6. Insert the probe into the probe barrel and screw the barrel into the probe collar. Tighten the barrel with 15kgf·cm of torque. - 7. Tighten the coupling nut. 8-88. Adjustments Related to Probe Replacement and Repair 8-89. When replacing the A51 board, A52 board, or the sampling diodes on each board, be careful not to shorten the wires connected to each board. Also, after board repair or replacement, the following adjustments must be performed: - Test Signal Level Adjustment (para. 5-32) - 2. Magnitude and Phase Accuracy Adjustment (para. 5-34) - 3. Frequency Characteristics Adjustment (para. 8-90) These adjustments are required when the probe assembly (HP Part NO.: 04193-61151) is replaced. 8-90. Frequency Characteristics Adjustment 8-91. When the probe assembly, A51 board, or A52 board is replaced, the adjustment described in Figure 8-18 must be performed. Do not perform this adjustment unless the probe has been repaired or replaced. ## FREQUENCY CHARACTERISTICS ADJUSTMENT PURPOSE: This adjustment compensates the 4193A's measurement circuit for probe and cable residuals at low frequencies (below 2MHz) and high frequencies (above 40MHz). Figure A. Frequency Characteristics Adjustment Setup. ## **EQUIPMENT:** Calibration Standard HP 16345A ## PROCEDURE: ## [PHASE Adjustment] - l. Remove the top cover. - 2. Insert the probe into the 100Ω standard (16345A). - 3. Set the 4193A's controls as follows: FREQ.400MHz Other Settings.....Initial Settings 4. Set all bits of Al7Sl to zero, as shown in Figure B. Figure B. Initial Setting of A17S1. 5. If the number of counts on the PHASE display is > +1, set Al7Sl bit (1) to 1 (right-position); if the number of counts is <-1, set bit (1) to 0 (left-position). If the number of counts is ±1, go to step 7; if otherwise, go to step 6. Figure 8-18. Frequency Characteristics Adjustment (Sheet 1 of 2). 6. Set Al7Sl bits() 6 and 1 in
accordance with the table below: Table A. Al7Sl Bits (5) thru (7) Settings | Display | Switch Setting | | | | | | |----------|----------------|-------|-------|--|--|--| | Counts | Bit ⑤ | Bit 6 | Bit ① | | | | | 2 or 3 | 1 | 0 | 0 | | | | | 4 or 5 | 0 | 1 | 0 | | | | | 6 or 7 | 1 | 1 | 0 | | | | | 8 or 9 | 0 | 0 | 1 | | | | | 10 or 11 | 1 | 0 | 1 | | | | | 12 or 13 | 0 | 1 | 1 | | | | | 14 or 15 | 1 | 1 | 1 | | | | ## [MAGNITUDE Adjustment] - 7. Set the frequency to 40MHz and note the number of counts on the FREQUENCY display as Zl. - 8. Set the frequency to $110\,\mathrm{MHz}$ and note the number of counts on the FREQUENCY display as Z2. - 9. If Z2-Z1>10, go to step 10; if Z2-Z1<10, the adjustment is completed. - 10. Set Al7Slbit 1 through 4 in accordance with the table below: Table B. Al7Sl Bits 1 thru 4 Settings | 72 71 | Switch Settings | | | | | | | |-------|-----------------|-------|-------|-------|--|--|--| | Z2-Z1 | Bit ① | Bit ② | Bit ③ | Bit ④ | | | | | 11 | 1 | 0 | 0 | 0 | | | | | 12 | 0 | 1 | 0 | 0 | | | | | 13 | 1 | 1 | 0 | 0 | | | | | 14 | 0 | 0 | 1 | 0 | | | | | 15 | 1 | 0 | 1 | 0 | | | | | 16 | 0 | 1 | 1 | 0 | | | | | 17 | 1 | 1 | 1 | 0 | | | | | 18 | 0 | 0 | 0 | 1 | | | | | 19 | 1 | 0 | 0 | 1 | | | | | 20 | 0 | 1 | 0 | 1 | | | | | 21 | 1 | 1 | 0 | 1 | | | | | 22 | 0 | 0 | 1 | 1 | | | | | 23 | 1 | 0 | 1 | 1 | | | | | 24 | 0 | 1 | 1 | 1 | | | | | 25 | 1 | 1 | 1 | 1 | | | | Figure 8-18. Frequency Characteristics Adjustment (Sheet 2 of 2). Table 8-3. Mnemonic Information (Sheet 1 of 2) | Mnemonic | Description | | | Mnemonic | | Description | | | ption | | | |----------|---|-----------------------|-------------------|-----------|------------------------------------|--------------------|------------------------------|---------------------|----------|------------|----------------------------------| | AB0-3 | Address Bus Lines. | | | FS1, FS2, | VCO frequency range control signal | | | ige control signal. | | | | | ADR1 | HP-IB address bit 1. | | | | FS3 | | ., T | FG2 | PG 7 | | | | ADR2 | HP-IB | address | bit 2 | • | | | FS | | FS2
L | FS3 | Frequency Range .400 to 9.999MHz | | ADR3 | HP-IB | address | bit 3 | • | | | Н | - 1 | L | L | 10.00 to 39.99MHz. | | ADR4 | HP-IB | address | bit 4 | • | | | Н | | Н | Н | 40.00 to 69.99MHz | | ADR5 | HP-IB | address | bit 5 | | | | L | | Н | Н | 70.00 to 110.0MHz | | ADCINT | AD co | nversion | inter | rupt. | | | | | | | | | ALC | Autom | atic Lev | el Cont | trol. | | FU | Frequency Up signal to All. | | | al to All. | | | ASE | Addre | ss Switc | h Enabl | le. | | FV | Var | iab1 | e fr | equenc | y signal to All. | | BUSINT | HP-IB | interru | pt. | | | ICH | Cur | rent | char | nnel. | | | CLK0 | 2.5MH | z clock. | | | | IMEAS | +5V | | | | nnel measured. | | DI01-8 | HP-IB | data bu | s lines | · . | | | -5V | | | | nnel not measured. | | EXTOSC | Exter | nal osci | llator. | | | IOB 0-7 | | | line | | | | EXTRG | Exter | nal trig | ger. | | | IOG1 | I/0 | Gro | up 1. | • | | | F01-F08 | N div | isor LSD | • | | | I0G2 | I/0 | Gro | up 2. | • | | | F11-F18 | N div | isor 3rd | SD. | | | IOG3 | I/O Group 3. | | | | | | F21-F28 | N div | isor 2nd | SD. | | | 10G4 | I/O Group 4. | | | | | | F31-F38 | N div | N divisor MSD. | | | 10G5 | 1/0 | Gro | up 5. | | | | | FBO, FB1 | VCO Frequency band signal. | | | 10G6 | 1/0 | Grou | up 6. | | | | | | | , | | | I0G7 | I/0 | Grou | up 7. | | | | | | | FB0 | FB1 | FS1 | FS2 | FS3 | IR | Curr | ent | chan | nel re | eference signal. | | | 0 | 0 | L | L | L | KEYINT | | | errup | | sterence signar. | | | 1 | 0 | Н | L | L | KNL | Karn | | crrup | | | | | 0 | 1 | Н | Н | L | MAG ⁺ | | | ∍ inn | ut to | MAGNITUDE ADC. | | | | | | MAG | Negative input to MAGNITUDE ADC. | | | | | | | | | L | | <u></u> | | | MPUCLK | | | _ | or the | | | | | | | | | NS1-NS7 | | | | | s to A5. | | FD | Freque | ncy Down | signa: | l to Al | 1. | PENUP | X-Y | reco | order | pen u | ıp. | | FOUT | FREQUE | NCY anal | og out | put. | | PHASE ⁺ | Positive input to PHASE ADC. | | | PHASE ADC. | | | FR | Freque | ncy Refe | erence s | signal | to All. | PHASE - | Negative input to PHASE ADC. | | | PHASE ADC. | | | FRO, FR1 | Freque | ncy rang | ge signa | al to A | 7. | PON | Powe | | | | | | | | | | | | RNGDN | Magnitude range down. | | | own. | | | | FR0 | FR1 | Frequency Range | | | RNGUP | Magn | itud | le ra | nge up |). | | | 0 | 0 | .400 to .999MHz | | | RPGINT | Interrupt from rotary pulse | | | ary pulse | | | | 1 | 0 | 1.000 to 9.999MHz | | | | generator. | | | - | | | | 0 | 1 | 10.00 to 99.99MHz | | | RPGUD | Rota | ry p | ulse | gener | ator up/down. | | | 1 | 1 1 100.0 to 110.0MHz | | | R/\overline{W} | Read | /wri | te. | Table 8-3. Mnemonic Information (Sheet 2 of 2) | Mnemonic | Description | Mnemonic | Description | |----------|--|----------|--| | SSRDY | Signal Source Ready to Al7. | 2IF | 19.53kHz clock. | | TONLY | Talk only mode. | θR | PHASE range control. | | VCH | Voltage channel. | | $H=\pm90^{\circ} \sim \pm180^{\circ}$. L=0 $\sim \pm90^{\circ}$. | | VCG | Ground for VCS. | θRIN | PHASE range detection.
H=+90 $^{\circ}$ +180 $^{\circ}$. L=0 $^{\circ}$ ±90 $^{\circ}$. | | VCS | VCO control signal. | өоит | PHASE Analog output. | | V/I | Voltage and current channel. | ф1 | lMHz clock. | | VIMEAS | +5V: IMEAS +5V, VMEAS -5V.
-5V: VMEAS +5V, IMEAS -5V. | Ф2 | lMHz clock. | | VMA | Valid Memory Address | | | | VMEAS | +5V: Voltage channel measured.
-5V: Voltage channel not measured. | | | | VREF | +2Vdc reference for Al4 ADCs. | | | | ZOUT | MAGNITUDE Analog output. | | | | ZR1 | 10Ω range signal to A3. | | | | ZR2 | 100Ω range signal to A3. | | | | ZR3 | $1k\Omega$ range signal. (Not used) | | | | ZR4 | $10 k\Omega$ range signal to A3 and A4. | | | | ZR5 | $100 k\Omega$ range signal to A3 and A4. | | | | | | | | Figure 8-19. Assembly Locations (Top View). | P/0 | Part of. | | Encloses front panel designations. | |---------------|--|---|------------------------------------| | 0 | Knob control. | [====] | Shielded area. | | • | Screwdriver adjustment. | | | | | Circuit assembly boarderli | ine. | | | * | Asterisk denotes a factory part may be omitted. | selected value. Value sho | own is typical, | | | Bead inductance. | | | | ٥ | Circuit board pattern induct | tance. | | | | Heavy line indicates main s | signal path. | | | | Heavy dashed line indicates | s main feedback path. | | | ķ cw | Wiper moves towards CW v from shaft or knob). | with clockwise rotation of co | ontrol (as viewed | | | Numbered test point. Mea | asurement aid provided. | | | -0- | Denotes wire color code. Code (e.g., 9.4.7 denotes | Code used is the same as the swhite/yellow/violet). | ne resistor color | | Ť | Indicates direct conducting | connection to earth. | | | т | Indicates conducting connec | ction to chassis or frame. | | | \Rightarrow | Indicates circuit common c | onnection. | | | | | | | Figure 8-20. Schematic Diagram Notes. Figure 8-21. Board Isolation Flow Chart (Sheet 1 of 4). Figure 8-21. Board Isolation Flow Chart (Sheet 2 of 4). ### Notes: - 1. Use a BNC-to-BNC cable and SMB-to-BNC adapter F N: 1250-1256). - 2. Set the input impedance of the scope to 50%. - 5. Set the input impedance of the scope IMA: BOARD ISOLATION FLOW CHART (Sheet 1 of 4) SEE INSIDE Figure 8-21. Board Isolation Flow Chart (Sheet 3 of 4). Figure 8-21. Board Isolation Flow Chart (Sheet 4 of 4). Figure 8-22. Signal Source Not Ready Flow Chart (Sheet 1 of 3). Figure 8-22. Signal Source Not Ready Flow Chart (Sheet 2 of 3). B CH A7U26 pin 15 (PC) .1V/DIV 50µs/DIV Check ATU8 and U26. SEE INSIDE A7016 and 017. Figure 8-22. Signal Source Not Ready Flow Chart (Sheet 3 of 3). #### Notes: - Use a BNC-to-BNC cable and SMB-to-SMB adapter (P/N: 1250-1236). - 2. Set the input impedance of the scope to 50Ω . Figure 8-23. ALC Not Ready Flow Chart. Al Board Block Diagram # A1 Sampling Pulse Generator Board Theory The Al board contains three circuits: step-recovery diode driver, forward current source, and differentiator. The sampling pulses, ISP and VSP, are generated from the SP RATE signal fed from the A5 board. SP RATE is a 3Vp-p square wave whose frequency is (RF+IF)/N. Duty cycle is 50%. Referring to the timing diagram below, at T1, Q6 and Q3 are off and Q5 is on. The voltage at TPI is -5V, turning off Q1, Q2, Q4, and Q7. Q10 is off and the voltage at TP2 is approximately -1.5V. Q8 and Q9 are both on, forward biasing and charging the step-recovery diode, CR3. At T2, when SP RATE drops to -1.5V, Q6 and Q3 are on and Q5 is off. The voltage at TPl is +15V, turning on Q1, Q2, Q4, and Q7. Q10 is on and the voltage at TP2 rises to approximately -1.2V. Q8 and Q9 are still on, but the voltage at the cathode of CR3 is rapidly rising to +14V, reverse biasing CR3. The diode continues conducting with reverse bias until the stored charge is removed, at which time it snaps off, generating a positive-going pulse. The pulses are then applied to two differentiators, (one consisting of C4 and R1 and the other consisting of C3, C7, and R3) to obtain the I-Channel sampling pulses and the V-Channel sampling pulses. C3 in the V-Channel differentiator adjusts the sampling pulse height. CR1 and CR2 remove the negative pulses from the differentiators' outputs. To eliminate inter-channel interference, VSP is delayed 2.2 nanoseconds in reference to ISP. The A41 Delay Line provides 1.2 nanoseconds delay and the cable connected to A1P1 provides the remaining 1 nanosecond. Figure 8-24. Al Board Troubleshooting Flow Chart. Figure 8-25. Al Sampling Pulse Generator Board
Assembly Component Locations. Figure 8-26. Al Sampling Pulse Generator/A41 Delay Board Assembly Schematic Diagram. A2 Board Block Diagram ### A2 ALC Amplifier Board Theory The A2 board contains a two-stage PIN diode attenuator, a 30dB amplifier, and 10dB output amplifier. It functions to maintain the RF current through the DUT constant for each magnitude range. (RF current through the DUT changes only when the magnitude range is changed.) The PIN diode attenuator consists of two emitter followers, Q1 and Q3; two PIN diode networks, CR1 through CR4 and CR5 through CR8; and two ALC voltage switches, Q2 and Q4. The RF test signal, PRE TS, is applied to the base of Q1, whose output is fed to the base of Q3 through the first PIN diode network. The output of Q3 is also fed through a PIN diode network to the 30dB amplifier or to the output amplifier. The amount of attenuation depends on the ALC voltage fed back from the A13 board and applied to the base of Q2 and the base of Q4. As this voltage changes, so does the current through the PIN diodes, changing the dynamic resistance of each diode. Resistance varies from approximately 5Ω to $20k\Omega$. Attenuation is from approximately -4dB to -80dB. The ALC voltage is fed back from an integrator on the A13 board and is from approximately 0.5V to 6.2V. Only the 0.5V to 4V range is used for level control; at higher or lower ALC voltages, the level is out of range (NOT READY lamp on). The RF signal output from the PIN diode attenuator is routed to the 30dB amplifier by relays K1 and K2 when the magnitude range is $1k\Omega$, $10k\Omega$, or $100k\Omega$. When the magnitude range is 10Ω or 100Ω , the relays route the RF signal around the 30dB amplifier, directly to the output amplifier. K1 and K2 are controlled by the A17 board. The output amplifier has a gain of 10dB and a cut-off frequency of approximately 120MHz. Figure 8-27. A2 Board Troubleshooting Flow Chart. Figure 8-28. A2 ALC Amplifier Board Assembly Component Locations. 8-47 Figure 8-29. A2 ALC Amplifier Board Assembly Schematic Diagram. A3 Board Block Diagram Attenuator Selection | MAGNITUDE RANGE | ATT 1 | ATT 2 | |-----------------------|---------|--------| | 10Ω | x 1 | x 1 | | 100Ω | x 1/10 | x 1 | | $-1\mathrm{k}\Omega$ | x 1/100 | x 1 | | $10 \mathrm{k}\Omega$ | x 1/100 | x 1/5 | | 100kΩ | x 1/100 | x 1/10 | ## A3 V-Channel Amplifier Board Theory The A3 board contains a constant current source, X2 amplifier, sampling diode bias circuit, switch driver, and two attenuator circuits. It has three main functions: (1) provide the requisite reverse bias voltage for the sampling diodes, (2) develop two sampling pulses of opposite polarity for the sampling operation, and (3) attenuate the amplified IF signal to a level appropriate for the selected magnitude range. The sampling diodes - CR1, CR2, CR3, and CR4 - on the A52 board (inside the probe) are normally reverse biased by +3.8V and -3.8V supplied from the bias circuit on the A3 board. The sampling pulse, VSP, fed from the Al board is applied to balun transformer A3T1, which develops equal but opposite polarity sampling pulses of approximately 4.5V. A second balun, A52T1, maintains the sampling pulses. When the sampling pulses are applied to the reverse-biased sampling diodes, the diodes turn-on for approximately 700 pico seconds, allowing the instantaneous RF voltage at the junction of A52 CR3/CR4 to appear at the CR1/CR2 junction. The instantaneous RF voltage charges A52Cl and is applied to the gate of source follower A52Q1. When the sampling pulses are removed, the sampling diodes are again reverse biased, stopping the flow of RF. A52Cl holds the gate of A52Q1 at the voltage of the sampled RF until the next sample is taken. A52Q1 is a source follower, and its output is controlled by the charge stored in A52Cl. The drain-to-source current is kept constant by the constant current source, A3Q1. The signal output from the source follower is at IF (9.765kHz) and is applied to one half of Ul, which is biased as a X2 amplifier. Part of the IF signal is fed back to the sampling diodes through the bias circuit to improve sampling efficiency. The two attenuators consist of two voltage divider networks three analog switches--U3, U4, U6-and two buffers, U2 and U5. The amount of attenuation depends on the magnitude range and is controlled by the ZR1, ZR2, ZR4, and ZR5 range control signals from the A17 board. The switch driver, U7 and U8, decodes the range control signals as appropriate for the requisite attenuation. the :etwork. at A3U1 Check U1, C13 and R15 through R17. Figure 8-31. A3 V-Channel Amplifier Board Assembly Component Locations. Figure 8-32. A52 Probe V-Channel Board Assembly Component Locations. Figure 8-33. A3 V-Channel Amplifier/A52 Probe V-Channel Board Assembly Schematic Diagram. A4 Board Block Diagram | MAGNITUDE RANGE | ATT | |-----------------|--------| | 10Ω | x 1/10 | | 100Ω | x 1/10 | | 1kΩ | x 1/10 | | 10kΩ | x 1/5 | | 100kΩ | x 1 | ### A4 I-Channel Amplifier Board Theory The A4 board contains a constant current source, X40 amplifier, sampling diode bias circuit, switch driver, attenuator circuit, and phase shifter. It has three main functions: (1) provide the requisite reverse bias voltage for the sampling diodes, (2) develop two sampling pulses of opposite polarity for the sampling operation, and (3) attenuate the amplified IF signal to a level appropriate for the selected magnitude range. The sampling diodes--CR1, CR2, CR3, and CR4--on the A51 board (inside the probe) are normally reverse biased by +3.8V and -3.8V supplied from the bias circuit on the A4 board. The sampling pulse, ISP, fed from the Al board is applied to balun transformer A4Tl, which develops equal but opposite polarity sampling pulses of approximately 4.5V. A second balun, A51Tl, maintains the sampling pulses. When the sampling pulses are applied to the reverse-biased sampling diodes, the diodes turn-on for approximately 700 pico seconds, allowing the instantaneous RF voltage (which represents the RF current through the DUT) at the junction of A51 CR3/CR4 to appear at the CR1/CR2 junction. The instantaneous RF voltage charges A51Cl and is applied to the gate of source follower A51Q1. When the sampling pulses are removed, the sampling diodes are again reverse biased, stopping the flow of RF. A51Cl holds the gate of A51Ql at the voltage of the sampled RF until the next sample is taken. A51Q1 is a source follower, and its output is controlled by the charge stored in A51C1. The drain-to-source current is kept constant by the constant current source, A4Ql. The signal output from the source follower is at IF (9.765kHz) and is applied the X40 amplifier, U2. Part of the IF signal is fed back to the sampling diodes through the Ul in the bias circuit to improve sampling efficiency. The attenuator circuit consists of a voltage divider network and an analog switch, U4. The amount of attenuation depends on the magnitude range and is controlled by the ZR4 and ZR5 range control signals from the Al7 board. The switch driver, U6, decodes the range control signals as appropriate for the requisite attenuation. The phase shifter, U3 and U5, compensates for any difference between the phase shift caused by the A52 and A3 boards and the phase shift caused by the A51 and A4 boards. The phase error caused by the 2.2ns difference between the I channel sampling pulses and V channel sampling pulses is compensated digitally by the microprocessor, after integration. Table A | Magnitude Range | ZR4 | ZR5 | rı | r 2 | r ₃ | |-----------------|-----|-----|----|-----|----------------| | 10 £,100 £.1k £ | L | L | L | L | Н | | 10k □ | Н | L · | L | Н | L | | 100k Ω | L | Н | Н | L | L | Check U2, Q1, and the related biasing network. Figure 8-34. A4 Board Troubleshooting Flow Chart. Figure 8-35. A4 I-Channel Amplifier Board Assembly Component Locations. Figure 8-36. A51 Probe I-Channel Board Assembly Component Locations. Figure 8-37. A4 I-Channel Amplifier/A51 Probe I-Channel Board Assembly Schematic Diagram. A5 Board Block Diagram | Test Frequency
(MHz) | Divider Circuit | Ns | Sampling Frequency
(MHz) | |-------------------------|--|----|-----------------------------| | 0.400 ~ 2.499 | · | 1 | 0.4098 ~ 2.509 | | 2.500 ~ 4.999 | o—[÷ 2] | 2 | 1.255 ~ 2.504 | | 5.000 ~ 9.999 | ÷2+2- | 4 | 1.252 ~ 2.502 | | 10.00 ∿ 14.99 | ÷3+2- | 6 | 1.668 ∿ 2.500 | | 15.00 ~ 19.99 | ·——÷4—÷2— | 8 | 1.876 ~ 2.500 | | 20.00 ~ 24.99 | ÷ 5 ÷ 2 → | 10 | 2.001 ~ 2.500 | | 25.00 ~ 29.99 | <u> </u> | 12 | 2.084 ~ 2.500 | | 30.00 ∿ 34.99 | •——÷7—÷2—• | 14 | 2.144 ~ 2.500 | | 35.00 ~ 39.99 | · ÷ 8 - ÷ 2 | 16 | 2.188 ~ 2.500 | | 40.00 ~ 44.99 | •————————————————————————————————————— | 18 | 2.223 ~ 2.500 | | 45.00 ~ 49.99 | ÷10-÷2 | 20 | 2.250 ∿ 2.500 | | 50.00 ~ 54.99 | ÷11 ÷2 | 22 | 2.273 ~ 2.500 | | 55.00 ~ 59.99 | ÷12-÷2- | 24 | 2.292 ~ 2.500 | | 60.00 ~ 64.99 | ÷13 ÷2 | 26 | 2.308 ~ 2.500 | | 65.00 ~ 69.99 | ÷14 ÷ 2 | 28 | 2.322 ~ 2.500 | | 70.00 ∼ 79.99 | <u>0 ÷ 2 </u> | 32 | 2.188 ∿ 2.500 | | 80.00 ~ 89.99 | <u>0 ÷ 2 </u> | 36 | 2.222 ∿ 2.500 | | 90.00 ~ 99.99 | <u>-÷2</u> +10 +2 - | 40 | 2.250 ~ 2.500 | | 100.0 ∿ 110.0 | <u>0-÷2</u> -÷11-÷2-0 | 44 | 2.273 ~ 2.500 | #### A5 Mixer and Divider Board Theory The A5 board contains a double balanced mixer, 120MHz low-pass filter, ECL translator, and Ns divider. Two signals, 300MHz -IF and 300MHz +RF, are input to the double balanced mixer. The output is passed through the 120MHz low-pass filter, leaving only an RF+IF signal. The ECL translator, Q3 and U4, converts the sinusoidal RF+IF signal into an ECL level square wave for input to the Ns divider. The Ns divider--U2, U5, U6, and U7--is controlled by the microprocessor and divides down the incoming RF+IF in accordance with the states of the Ns control lines, NS1 through NS7. The Ns divisor selected by the microprocessor depends entirely on the selected test
frequency. SP RATE (sampling pulse rate) is calculated as (RF+IF)/Ns. The frequency of SP RATE must be such that the cw RF test signal is sampled at increasingly earlier points. Figure 8-38. A5 Board Troubleshooting Flow Chart Figure 8-39. A5 Mixer and Divider Board Assembly Component Locations. 8-65 Figure 8-40. A5 Mixer and Divider Board Assembly Schematic Diagram. A6 Board Block Diagram Figure 8-41. A6 Board Troubleshooting Flow Chart. Figure 8-42. A6 Voltage Controlled Crystal Oscillator Board Assembly Component Locations. 8-69 Figure 8-43. A6 Voltage Controlled Crystal Oscillator Board Assembly Schematic Diagram. # 7 Divider A7 Board Block Diagram Switch Selection for INT OSC. | Frequency Range | Sı | S ₂ | S ₃ | S4 | S ₅ | S ₆ | FR | FL | |-------------------|----|----------------|----------------|----|----------------|----------------|--------|-------| | .400 to 9.999MHz | 1 | 3 | 1 | 1 | 1 | 1 | 1kHz | 10kHz | | 10.00 to 99.99MHz | 1 | 2 | 1 | 2 | 2 | 1 | 10kHz | 1MHz | | 100.0 to110.0MHz | 1 | 1 | 1 | 3 | 2 | 1 | 100kHz | 10MHz | Switch Selection for EXT OSC. | Frequency Range | Sı | S ₂ | S₃ | S ₄ | S ₅ | Se | FR | FL | |-------------------|----|----------------|----|----------------|----------------|----|--------------------|-----------| | .400 to 9.999MHz | 2 | 3 | 2 | 1 | 1 | 2 | EXT
400 | EXT 40 | | 10.00 to 99.99MHz | 2 | 2 | 2 | 2 | 2 | 1 | <u>EXT</u>
1000 | EXT
10 | | 100.0 to 110.0MHz | 2 | 2 | 2 | 2 | 2 | 1 | EXT
1000 | EXT 10 | #### A7 Divider Board Theory The A7 board controls the frequency of the instrument's test signal source. Major circuits on this board are the ÷N Divider, Osc. Selector, Frequency Selector, Ext. Osc. Detector, 300MHz Detector, Lock Detector, and Time Interval Circuit. To lock the instrument's test signal source at the frequency displayed on the front-panel or at the frequency of the external oscillator (if connected), FR and FV must be of the same frequency. With no external oscillator connected, FR is maintained constant at lkHz, 10kHz, or 100kHz, depending on the test frequency range, and FV is determined by the N divisor and the test frequency, RF. The N divisor in this case is determined by the number of counts on the FREQUENCY display. With an external oscillator connected, however, the frequency of FR is equal to 1/400 or 1/1000 of the external oscillator's frequency. The frequency of FV is still determined by the N divisor and the test frequency, but N in this case is either 400 or 1000, depending on the frequency range. The frequency range, with or without an external oscillator, is controlled by the microprocessor and is determined by the FRO and FR1 frequency range control lines. Refer to the table below for the values of FR, FV, N, FRO, and FR1. | _ | Without Ext. Osc. | | | With Ext. Osc | | | FR0 | FR1 | |-------------------|-------------------|---------|----------------------------|---------------|---------|------|--------|-----| | Test Frequency | FR | FV | N | FR | FV | N | - 1.00 | | | .400 to 9.999MHz | 1kHz | RF
N | Disp*
Cnts. | Ext 400 | RF
N | 400 | Х | 0 | | 10.00 to 99.99MHz | 10kHz | RF
N | Disp*
Cnts. | Ext
1000 | RF
N | 1000 | 0 | 1 | | 100.0 to 110.0MHz | 100kHz | RF
N | Disp [*]
Cnts. | Ext
1000 | RF
N | 1000 | l | 1 | 1: TTL HIGH * Number of counts on the FREQUENCY display. 0: TTL LOW X: Irrelevant The $\div N$ circuit consists of a two modulus $(\div 10/\div 11)$ prescaler (U5), four programmable decade counters (U23 through U26), and a D flip-flop (U17A). The whole circuit functions as a programmable up-counter, outputting a pulse every N input pulses. The input, TS PLL, is a squared RF (test signal frequency) fed back from the A9 board. The N divisor is determined by the microprocessor and depends on whether or not an external oscillator is connected to the instrument. Refer to the table above. The N divisor actually loaded into the counter is the 4-digit 9's complement of the N values listed in the table. If, for example, N is 400, the value loaded into the counter is 9999-0400, or 9599 (1001, 0101, 1001, 1001). | <u>U26</u> | <u>U24</u> | <u>U23</u> | <u>U25</u> | |------------|------------|------------|------------| | 9
(LSD) | 9 | 5 | 9
(MSD) | The counter begins with this value and counts up until maximum count (9999) is reached, at which time one pulse is output and U17A resets the entire circuit to the programmed value. The frequency of FV, thus, is TS $PLL \pm N$. As an example, assume that the test signal source is locked at 500kHz. The N divisor, then, is 500 and the 9's complement of this is 9499. From the above table, FR is 1kHz, and to maintain the locked condition, FV must also be 1kHz. To accomplish this, the prescaler, U5, is initially set to the ÷11 mode and remains so until U26 (LSD of N) reaches maximum count, at which time U26's carry output goes HIGH, setting U5 to the ÷10 mode and stopping U26. The total number of TS PLL pulses counted thus far is ### (9-programmed value of U26) x 11 where 9 is the maximum count of U26. Thus, for the example given, no TS PLL pulses have been counted. U5 is now in the $\div 10$ mode, U26 is disabled (stopped), and U24, U23, and U25 are counting the TS PLL/10 pulses output from U5. When maximum count is reached, one pulse is output (FV) and U17A resets U5 to the $\div 11$ mode, enables U26, and reloads the N divisor. Now assume that the FREQUENCY DIAL on the front-panel is rotated until 501kHz is displayed. The microprocessor detects this, and changes the N divisor to 501 (whose 9's complement is 9498). But the frequency of the signal source is still 500kHz, thus FV is 500kHz÷501, or 998Hz. A 2Hz difference now exists between FR (lkHz) and FV. The phase detector on the All board detects this difference and slightly charges an integrator, whose output is the VCO control voltage, until the test signal frequency is 501kHz. FV is then lkHz and the signal source is locked at the new frequency. U22, U27, U28, and U30 divide down the 10MHz CLK into six signals: 100kHz, 500kHz, 1MHz, 2MHz, 2.5MHz, and 10MHz. The 100kHz signal is used to generate FR; the 500kHz signal is the reference for the 300MHz Detector; the 1MHz and 10MHz signals are used by the Lock Detector; the 2MHz signal (2MHz CLK) is used by the Microproessor; and the 2.5MHz signal (2.5MHz CLK) is used by the integrators on the A14 board. The Osc. Selector, U20, is a quad 2-line-to-1-line data selector. It is controlled by the EXT OSC DETECTOR, U8B, and selects either the 10MHz CLK or EXT OSC ÷10 as the source signal for FR. With no external oscillator connected, pin 5 of U8B is LOW and FR, output from pin 7 of U21, is lkHz, 10kHz, or 100kHz, depending on the states of FR0 and FR1. When an external oscillator is connected, U8B pin 5 goes HIGH and FR is Ext. Osc/400 or Ext. Osc/1000, again depending on FR0 and FR1. The $\div 4/\div 10$ Divider, U15, operates in 4 mode when an external oscillator is connected, and in 10 mode otherwise. The Frequency Selector, U21, is a dual 4-line-to-1-line data selector. It is controlled by FR0 and FR1 and outputs to signals: FR and FL (frequency lock). FL is 10kHz, 1MHz, or 10MHz when no external oscillator is connected, or Ext Osc 40 or Ext Osc 10. The $300 \mathrm{MHz}$ Detector contains a phase-frequency detector, U12, and a D-type flip-flop, U27B. It monitors the frequency of the VCO on the Al0 board. If the VCO frequency drops below $300.4 \mathrm{MHz}$, the Q output of U27B goes LOW, clearing U3B and, thus, generating $\overline{\mathrm{FU}}$ (frequency up). The Lock Detector-U3, U4, U11, and related gating-controls the \overline{FU} (frequency up), \overline{FD} (frequency down), and SSRDY (signal source ready) signals. Basically, the circuit compares the FV signal, output from the $\div N$ circuit, with a signal (from pin 9 of U21) whose frequency is, depending on the test frequency range, 10 or 100 times that of FR. If the frequency of FV is significantly higher or lower than that of FR, the Lock Detector will output the appropriate \overline{FU} or \overline{FD} signal in order to speed up the charge/discharge time of the integrator on the A11 board. If the difference between FR and FV is only slight, \overline{FU} and \overline{FD} are held HIGH and the integrator will charge/discharge at the normal rate. The purpose of the circuit is to reduce the time required to lock the signal source in response to large frequency changes. U4 and U11 are programmable up/down counters. The programmed values are controlled by FR1 and are, thus, signal-source frequency dependent, as shown in the table below: | Test Frequency | U4 Pin | | | | Ull Pin | | | | |----------------|--------|---|----|---|---------|---|----|---| | (MHz) | 15 | 1 | 10 | 9 | 15 | 1 | 10 | 9 | | 0.4 to 9.999 | L | L | L | L | Н | Н | L | Н | | 10.00 to 110.0 | L | Н | Н | L | Н | L | Н | L | Both counters are initially loaded and both D flip-flops, U3A and U3B, are set up by FV. The counters then begin counting down the pulses from pin 9 of U21 and continue to do so until the next FV pulse. If at the end of this period the content of the counters is greater than 4, the Q output of U3A goes HIGH, causing a short pulse to be output from pin 3 of U2 (dual multivibrator) and generating \overline{FD} . If the borrow output of U4 is HIGH at the second FV pulse, the Q output of U3B goes HIGH, causing a short pulse to be output from pin 13 of U2 and generating \overline{FU} . The Q output of U3B is also used to clear U3A in order to prevent \overline{FU} and \overline{FD} from existing simultaneously. The Time Interval Circuit--U2, U17B, and U8A—limits the length of time \overline{FU} or \overline{FD} is active. This prevents the signal source from overshooting the selected test frequency when \overline{FU} or \overline{FD} is active (LOW). Both halves of U2 have an external RC network--R1/C8 and R2/C9--which controls the output pulse width (approximately
70ms). These pulses enable U9A and U9B. U8A and U17B control the SSRDY signal. Figure 8-44. A7 Divider Board Assembly Component Locations. 8-75 Figure 8-45. A7 Divider Board Assembly Schematic Diagram. A8 Board Block Diagram Figure 8-46. A8 Crystal Oscillator Board Assembly Component Locations. Figure 8-47. A8 Crystal Oscillator Board Assembly Schematic Diagram. A9 Board Block Diagram ### A9 Mixer Board Theory The A9 board contains a double balanced mixer, 150MHz low-pass filter, output amplifier, two clipping amplifiers, and a ÷10 circuit. It has three functions: (1) synthesize the RF test signal, (2) divide down an incoming signal from an external oscillator, if connected, and (3) square the RF feedback signal. RF synthesis is accomplished by mixing the 300MHz signal from the A8 board with the 300MHz +RF signal from the A10 board. The mixer output is passed through a 150MHz low-pass filter, leaving only the RF signal. This signal is then amplified by the output amplifier, Q1 and Q2, and output to the A2 board. After amplification it is also clipped by U1 and fed back to the A7 board, where it is used for frequency control. When an external oscillator is connected to the EXT OSC connector, the incoming signal is first passed through a buffer amplifier, Q7 and Q8, then amplified and clipped by U3, and finally divided down to EXT OSC ÷10 by U2, an ECL-to-TTL counter. Figure 8-48. A9 Mixer Board Assembly Component Locations. Figure 8-49. A9 Mixer Board Assembly Schematic Diagram. Alo Board Block Diagram 8-82 #### A10 Voltage Controlled Oscillator Board Theory The AlO board contains a voltage-controlled oscillator (VCO), buffer amplifier, three output amplifiers, and a ÷40 circuit. It outputs three signals: 300MHz+RF to the A5 board for sampling pulse generation, 300MHz+RF to the A9 board for test frequency synthesis, and (300MHz+RF) ÷40 to the A7 board for PLL control. The VCO outputs a 300.4MHz to 410MHz signal and is controlled by FS1, FS2, FS3, and VCS from the All board. FS1, FS2, and FS3 control the frequency range and each can have a DC voltage of +9V or -23V, depending on the range of the selected test frequency. Refer to the following table: | FS1 | FS2 | FS3 | Frequency Range | |-----|-----|-----|----------------------------| | L | L | L | .400 to 9.999 M Hz | | Н | L | L | 10.00 to 39.99MHz | | Н | н | Н | 40.00 to 69.99MHz | | L | Н | Н | 70.00 to 110.0 M Hz | VCS is output from the integrator on the All board and controls the VCO frequency, within the range determined by FS1, FS2, and FS3, by changing the capacitance of CR5 (vari-cap diode). It can have a DC voltage from -2.5V to -10.5V, depending on the selected test frequency. VCS voltages at the minimum and maximum frequencies of each frequency range are listed in the following table: | Test Frequency | VCS Voltage | |---|---| | (MHz) | (DC) | | .4
9.999
10
39.99
40
69.99
70 | -5.5V
-7.9V
-2.5V
-8.2V
-2.5V
-7.2V
-4.0V
-10.5V | When FS1, FS2, FS3 are each -23V, the three switching dioes—CR2, CR3, and CR4—are reverse biased (off) and the VCO's tank circuit consists of CR5, C69, C70, and the pattern inductance between the collector of Q7 and VCO circuit common. If FS1, for example, is +9V, CR2 will be forward biased and the pattern inductance between the cathode of CR2 and circuit common is effectively removed from the tank circuit. C63, C64, and C65 are large enough to have no effect on the tank circuit's resonance when the corresponding diode—CR2, CR3, and CR4, respectively—is forward biased (on). The VCO output is resistance coupled to the buffer amplifier, Q5 and Q6, for input to the three output amplifiers. The ÷40 circuit contains an ECL-to-TTL ÷10 counter, Ul, and a dual flip-flop IC, U2, wired for ÷4 operation. The output from the ÷40 circuit, VCO ÷40, is a square wave and is used for PLL control on the A7 board. Figure 8-50. All Voltage Controlled Oscillator Board Assembly Component Locations. Figure 8-51. A10 Voltage Controlled Oscillator Board Assembly Schematic Diagram. ## All Integrator Amplifier All Board Block Diagram FR-FV Relationship in INT OSC. | Test Frequency Range | FR | FV | |----------------------|--------|---------| | 0.4 - 9.999MHz | lkHz | | | 10.00 - 99.99MHz | l0kHz | RF
N | | 100.0 - 110.0MHz | 100kHz | N | N: 1-9999 ### A11 Integrator Amplifier Board Theory The All board provides the frequency control voltage, VCS, and frequency range control voltages, FS1 through FS3, for the voltage controlled oscillator on the Al0 board. VCS can be from -5.5V to -10.5V and is controlled by FD, FU, FR, and FV. When FR and FV are of the same frequency and in phase, the \overline{U} and \overline{D} outputs of the phase/frequency detector, U9, are both HIGH. The outputs of U6B and U6D, then, are both -5V, opening analog switches U2A and U2B. With both switches open, no charge/discharge voltage from the +5V (Q1) and -5V (Q5) voltage sources is applied to the input of the integrator; thus, VCS remains constant. (Q1 and Q5 limit the charge and discharge voltages to +1V and -1V, respectively.) When there is a slight frequency difference between FR and FV, U9 will detect this difference and close the appropriate analog switch to allow the integrator to charge to a more negative voltage or discharge to a less negative voltage. As an example, consider the case where the FV frequency is slightly below that of FR. Here the U output of U9 will go LOW, forcing the output of U6B to +5V. Analog switch U2A will then close and the integrator will begin to charge to a more negative voltage (the integrator inverts the input), and will continue to do so until the frequency of FV is equal to that of FR. This is true also for the opposite case, where the frequency of FV is slightly above that of FR. The only difference is that analog switch U2B closes and the integrator is discharged to a less negative voltage by the -5V voltage source. Up to now, it is assumed that there is little or no difference between the FR and FV frequencies. In both cases, \overline{FU} and \overline{FD} are both HIGH, and as such play no part in charging or discharging the integrator. But when there is a suddenly large difference between the FV and FR frequencies, \overline{FU} or \overline{FD} (never both) come into play. These function in such cases is to shorten the time required to lock the signal source at the new frequency. When either \overline{FU} or \overline{FD} is LOW the output of U6C goes to +5V, reverse biasing CR3 and CR4. With CR3 and CR4 reverse biased, FET switches Q3 and Q4 close, effectively removing R23, R24, and C7 from the circuit and placing R4 in parallel with R5. The RC time constant, which determines the time required to charged/discharge the integrator, is greatly reduced, allowing the integrator to respond more quickly to the frequency difference between FR and FV. The frequency range control voltages--FS1, FS2, and FS3-are controlled by FB0 and FB1, which are supplied by the microprocessor. U5 and U4 decode FB0 and FB1 for control of transistor switches Q6 through Q11 and U3. The relation between the FB control lines and the FS lines is given in the following table: | FB0 | FB1 | FS1 | FS2 | FS3 | |-----|-----|-----|-----|-----| | 0 | 0 | L | L | L | | 1 | 0 | Н | L | L | | 0 | 1 | Н | Н | L | | 1 | 1 | L | Н | Н | Figure 8-52. All Integrator Amplifier Board Assembly Component Locations. Figure 8-53. All Integrator Amplifier Board Assembly Schematic Diagram. Al2 Board Block Diagram ## A12 IF BPF Board Theory The Al2 board contains two identical channels: the I channel and the $\mbox{V/I}$ channel. Each channel contains a preamplifier and a bi-quad band-pass filter. In the I channel, the ICH signal from the A4 board is constantly fed through the I channel preamplifier and band-pass filter (U2, U5, U6). The signal output from the I channel (IR) is used as the reference for the phase measurement on the A13 board, ALC feedback, and ranging. In the V/I channel, the ICH signal and the VCH signal (from A3) are alternately fed through the V/I channel preamplifier (U7) and band-pass filter (U1, U3, U4) by switches U8 and U9. The switches are controlled by IMEAS and VMEAS from the A13 board. The signals output from the V/I channel are rectified on the A13 board for measurement by the integrators on the A14 board. It should be noted that the IR and ICH signals output from this board are identical and that the level of each is almost constant. Only the level of the VCH signal changes. Figure 8-54. Al2 Board Troubleshooting Flow Chart. Figure 8-55. Al2 IF BPF Board Assembly Component Locations. Figure 8-56. Al2 IF BPF Board Assembly Schematic Diagram. A13 Board Block Diagram #### A13 Detector Board Theory The Al3 board provides ALC feedback, magnitude range control, phase range control, phase detection, I channel/V channel switching control signals, and rectification of the V channel and I channel signals. The IR signal, fed from the A12 board, is used to generate the ALC feedback and RNGUP/RNGDN signals, and is used as the reference for phase detection. To accomplish this, IR is amplified by U1A and then half-wave rectified by CR1. The rectified IR charges the integrator, U1B, and the output is fed back to the A2 board, where it is used to increase or decrease the attenuation of the RF signal. (IR represents the current through the DUT, which must be kept constant for accurate magnitude measurement.) The integrator output is also applied to a window comparator, U5A and U5B, which provides the RNGUP (range-up) and RNGDN (range-down) signals. The unrectified IR (from the output of U1A) is input to a limitter, U2, and then shaped into a 10Vp-p square wave by U9A. This signal is used as the reference signal for phase detection and for phase range detection. V/I, from the A14 board,
is alternately the IF signal (VCH) representing the sampled RF voltage across the DUT and the IF signal (ICH) representing the sampled RF current through the DUT. Switching is performed on the A12 board and is controlled by VMEAS and IMEAS from U3C and U3D, respectively. VMEAS and IMEAS are both 10Vp-p square waves and of the same frequency. The frequency is determined by VIMEAS and depends on whether the instrument is in NORMAL SPEED measurement mode or HIGH SPEED measurement mode. In HIGH SPEED mode VIMEAS has a period of 100 milliseconds. The ON time of VMEAS is approximately 30 milliseconds and that of IMEAS is approximately 70 milliseconds. Refer to the following timing diagram for the relationship between VIMEAS and VMEAS/IMEAS. When the instrument is set to HOLD, VIMEAS goes LOW and stays LOW until the instrument is manually, externally, or internally triggered. From the above timing diagram, then, VMEAS is ON, allowing only the VCH signal to be sent to the Al3 board. V/I takes two paths on the Al3 board. One through Ul2 and Ul5 to the Al4 board for magnitude measurement, and the other through Ul3 to the phase range detector and phase detector. U12 amplifies the incoming V/I signal. It also causes a slight phase shift to negate the phase difference between the rectifier control signals (from U9B) and the rectifier input. This prevents the rectifier from outputting distorted half-wave signals. The rectifier outputs are filtered into DC by R48/C29 and R55/C39, and then input to the magnitude A/D converter on the A14 board. To extend the range of phase measurements, the 4193A has two phase ranges, 0° and 180°. Phase range selection is automatic and is controlled by the phase range detector, which consists of U11A, U11B, U11C, U5C, and U5D. To insure virtually error free phase measurements, the reference signal, IR, used in phase detection and phase range detection, is identical to the ICH signal of V/I. When IR and V/I arrive at the A13 board there is virtually no phase difference between IR and the ICH signal of V/I. But on the A13 board they take different paths to the phase detector, resulting in a slight phase error, and since the VCH signal of V/I takes the same path as that of ICH, the same phase error will exist between IR and VCH as that between IR and ICH. The instrument first measures the phase of ICH and stores this phase error in the microprocessor. When the phase of VCH is measured, the stored phase error is subtracted from the measured phase before display on the front panel. The phase range detector compares the V/I signal to the IR signal, and if the phase difference between IR and VCH is greater than ± 100 °, the ON period of the square wave output from U5D will be too short for C1l to charge enough to keep the potential at pin 8 of U5C above that at pin 9. In this case, the output of U5C, θ RIN, will go HIGH, but only when V/I is VCH. When V/I is ICH, RIN is LOW because there is never more than a slight phase difference between IR and ICH. This means that when the phase difference between IR and VCH is greater ± 100 °, θ RIN will be a periodic square wave. When θ RIN is HIGH, the microprocessor detects it and forces θ R HIGH until θ RIN goes LOW. Thus, θ RIN and θ R are identical. θ R controls the INVERT/NON INVERT AMPLIFIER—U14, U8A, U8B, and U7. When the phase is less than ± 100 °, V/I passes through U13, U14, U8B, U7, and U9B. The V/I signal at the output of the wave shaper, U9B, is in-phase with the input of the limitter U13. When the phase exceeds ± 100 °, however, the VCH signal of V/I will be inverted by U7 because θR will be HIGH, forcing U14 to route the incoming signal through U8A to the inverting input of U7. The ICH signal is never inverted by U7. The phase detector consists of a dual monostable multivibrator (U4), RS flip-flop (U10B and U10C), and a switch (U16). IR is input to one half of U4, and V/I is input to the other half. The pulse width of each Q output is determined by C3 and C4, and the phase difference between the two outputs determines the pulse width of the flip-flop's output. The flip-flop controls the switch, U16, which, when closed, allows +2VDC to be applied to the two integrating networks, R49/C30 and R56/C40. The outputs from U16 are pulse trains of a constant frequency (IF) but with a duty cycle that depends on the phase of the DUT's impedance. As the duty cycle changes, so does the DC level of PHASE+ and PHASE- PHASE+ and PHASE- are sent to the phase A/D converter on the A14 board for measurement. Check U14. Check U8B. Check U7. Figure 8-57. Al3 Board Troubleshooting Flow Chart. Figure 8-58. Al3 Detector Board Assembly Component Locations. Figure 8-59. Al3 Detector Board Assembly Schematic Diagram. ## Al4 Analog-to-Digital Converter (1): polarity (1 for +, 0 for -). (2): over range (1 for over range, 0 for not over range). (3): not used. (4): measured counts in binary. (5): high byte. (6): low byte. Data Transfer | ĪOG4 | R/W | ABO | AB1 | AB2 | IOB7 | IOB6 | IOB5 | IOB4 | IOB3 | IOB2 | IOB1 | IOB0 | | |------|-----|-----|-----|-----|------|------|----------|----------|------|------|------|------|-----------------------------| | L | Н | Н | L | L | 1 | 0 | \times | \times | 0 | 0 | 1 | 1 | high byte for Al4U3 output. | | L | Н | L | Н | L | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | low byte for Al4U3 output. | | L | Н | Н | Н | L | 0 | 0 | \times | \times | 0 | 0 | 1 | 1 | high byte for Al404 output. | | L | Н | L | L | Н | l | 0 | 0 | 0 | 0 | 1 | 0 | 0 | low byte for Al4U4 output. | | _ ,= | | 100 | | ADO | A14U7 | | | | | | | | | | | |------|------|-----|-----|-----|--------|--------|--------|--------|--------|--------|-------|--|--|--|--| | R/W | IOG4 | AB0 | AB1 | AB2 | pin 15 | pin 14 | pin 13 | pin 12 | pin 11 | pin 10 | pin 9 | | | | | | х | Н | х | х | х | Н | Н | Н | Н | Н | Н | Н | | | | | | L | х | х | х | х | Н | Н | Н | Н | Н | Н | Н | | | | | | Н | L | L | L | L | L | Н | Н | Н | Н | Н | Н | | | | | | Н | L | Н | L | L | Н | L | Н | Н | Н | Н | Н | | | | | | Н | L | L | Н | L | Н | Н | L | Н | Н | Н | Н | | | | | | Н | L | Н | Н | L | Н | Н | Н | L | Н | Н | Н | | | | | | Н | L | L | L | Н | Н | Н | Н | Н | L | Н | Н | | | | | | Н | L | Н | L | Н | Н | Н | Н | Н | Н | L | Н | | | | | | Н | L | L | Н | Н | Н | Н | Н | Н | Н | Н | L | | | | | H: high level L: low level x: irrelevant ## A14 Analog-to-Digital Converter Board Theory The CLOCK DIVIDER, Ull and Ul2, outputs a 156kHz clock and a 2IF (19.53kHz) clock. The 156kHz clock is used by the MAGNITUDE and PHASE integrators, and the 2IF clock is used in sampling pulse generation. The CONTROL DECODER, U7, is a 1-of-8 decoder/multiplexer. It controls the overall operation of U3 and U4 and data transfer to the A17 board. When $\overline{10G4}$ goes HIGH or R/\overline{W} goes LOW, all outputs of U7 go HIGH. When $\overline{10G4}$ goes LOW and R/\overline{W} goes HIGH, one of the outputs, determined by ABO, ABI, and AB2, will go LOW. When AB0, AB1, and AB2 are all LOW, U7 pin 15 will be LOW, setting the Q outputs of U9A and U9B HIGH, which signal U3 and U4 to begin integration of the differential voltages MAG⁺/MAG⁻ and PHASE⁺/PHASE⁻. Also at this time, U7 pins 11, 12, 13, and 14 are HIGH, setting the DATA OUTPUT DRIVER, U6, to the high-Z state and disabling data output from U3 and U4 (LBEN and HBEN of U3 and U4 are held HIGH). At the completion of integration, two things happen: (1) the STATUS outputs of U3 and U4 go LOW and (2) the measured data becomes available at the outputs of U3 and U4. When both STATUS outputs go LOW (they do not go LOW simultaneously), the Q outputs of U2A and U2B will go HIGH, forcing ADCINT LOW. After receiving the ADCINT, the microprocessor will begin sequencing the ABO, ABI, and AB2 lines. This resets U9A, U9B, U2A, and U2B, setting U3 and U4 to HOLD and removing the ADCINT. U7 then sequentially activates U3 HBEN (high byte enable), U3 LBEN (low byte enable), U4 HBEN, and U4 LBEN. When the HBEN input of either U3 or U4 is brought LOW, the higher order byte-bits 9 through 12, polarity bit, and overrange bit-of the chip's latch is output onto the 8-bit IO bus; when LBEN is brought LOW, the lower order byte, bits l through 8, is output. VI MEASURE SELECTOR, U10, outputs a 1Hz TTL square wave (normal speed mode) or 10Hz TTL square wave (HIGH SPEED mode) which controls the channel select switches on the A12 board. When VIMEAS is HIGH (about 30 milliseconds in HIGH SPEED mode), the phase and level of the I channel IF representing the RF current through the DUT are measured; when VIMEAS is LOW (about 70 milliseconds in HIGH SPEED mode), the phase and level of the V channel IF representing the RF voltage across the DUT are measured. U3 and U4 perform conventional dual-slope integration of the differential voltages present at their INL and INH inputs. The AD conversion rate is determined by the 156kHz clock. Each conversion cycle lasts for 8192 clock periods and each cycle is divided into three phases: auto-zero, integrate, and deintegrate. During auto-zero, the reference capacitors, C1 and C2, are charged by VREF (+2VDC) from the VREF GENERATOR, Q1, and the auto-zero capacitors, C6 and C5, are charged to compensate for various offset voltages on the chips. The auto-zero phase lasts a minimum of 2048 clock periods. During integrate, the differential voltage between INH and INL is integrated for a fixed period of 2048 clock periods. At the end of this phase, polarity is determined. During deintegrate, the integrator is discharged by the previously charged reference capacitor, and the number of clock periods required for the integrator output to return to zero (established in auto-zero) is counted. The input voltage is proportional to the number of clock periods counted. A simplified timing diagram for one complete conversion cycle is shown below: Figure 8-60. Al4 Board Troubleshooting Flow Chart.
Figure 8-61. Al4 Analog-to-Digital Convertor Board Assembly Component Locations. Figure 8-62. Al4 Analog-to-Digital Convertor Board Assembly Schematic Diagram. ## Al5 Analog Output A15 Board Block Diagram | Test Frequency Byte | | | F11 | F10 | F9 | F8 | F7 | F6 | F5 | F4 | F3 | F2 | F1 | F0 | |---------------------|--|--|-----|-----|----|----|----|----|----|----|----|----|----|----| | Impedance Byte | | | Z11 | Z10 | Z9 | Z8 | Z7 | Z6 | Z5 | Z4 | Z3 | Z2 | Z1 | ZO | | Phase Byte | | | P11 | P10 | Р9 | Р8 | P7 | P6 | P5 | P4 | Р3 | P2 | P1 | P0 | | | | | | IOE | line | S | | | |-----|----|----|----|-----|------|-----|----|----| | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | HBF | | | | | F11 | F10 | F9 | F8 | | LBF | F7 | F6 | F5 | F4 | F3 | F2 | F1 | F0 | | HBF | | | | | Z11 | Z10 | Z9 | Z8 | | LBZ | Z7 | Z6 | Z5 | Z4 | Z3 | Z2 | Z1 | ZO | | НВР | | | | | P11 | P10 | Р9 | Р8 | | LBP | P7 | Р6 | Р5 | P4 | Р3 | P2 | P1 | P0 | | Data | Read Address* | |----------------|---------------| | HBF bit 0 to 3 | A15U15A0 | | LBF bit 4 to 7 | A15U16A0 | | LBF bit 0 to 3 | A15U17A0 | | HBZ bit 0 to 3 | A15U15A1 | | LBZ bit 4 to 7 | A15U16A1 | | LBZ bit 0 to 3 | A15U17A1 | | HBP bit 0 to 3 | A15U15A2 | | LBP bit 4 to 7 | A15U16A2 | | LBP bit 0 to 3 | A15U17A2 | ^{*:} Read Address A3 is not used. ## A15 Analog Output Board Theory The A15 board outputs DC voltages proportional to the magnitude, phase, and frequency values displayed on the front panel when the unit's X-Y RECORDER function is set to ON. Twelve-bit digital data for each front panel display is sent from the microprocessor via the 8-bit IO bus and is stored in three RAMs, U15, U16 and U17. The low-order byte, bits 1 through 8, is stored in U16 and U17; the high-order byte, bits 9 through 12, is stored in U15. Each RAM is capable of storing four 4-bit words. WRITE addressing for each RAM is controlled by ABO and ABI. RAM write-enable is controlled by R/W, $\phi 2$, AB2, and I0G7. When U6A pin 6 is LOW the data on lines BO through B3 of the IO bus is stored in U15 at the address determined by ABO and ABI. When U6B pin 8 is LOW the data on the IO bus is stored in U16 and U17 at the address determined by ABO and ABI. Each RAM is permanently read-enabled (pin 11 grounded), and READ addressing is controlled by the outputs from U3B and U3D, which are produced by dividing down (U1 and U2) the ϕ 2 1MHz clock. The U3B and U3D outputs apply a mod-4 binary count to the READ address inputs of each RAM, allowing the data stored at the selected address to appear at the data outputs of each RAM. The U3B and U3D outputs are also used by the CHANNEL DECODER, U9, to synchronize output channel selection (performed by U12) with the data-read operation. This insures that when phase data, for example, is being read, it is output to the θ OUT channel and not to the ZOUT channel or FOUT channel. The DA converter, Ull, continuously converts the 12-bit digital data at its inputs and outputs a proportional DC voltage to the three-channel multiplexor, Ul2. An example of the DA converter output is shown below: The multiplexor selects the appropriate output channel for the analog voltages, as directed by the CHANNEL DECODER, U9. A timing diagram containing the DAC output, CHANNEL DECODER outputs, and multiplexor outputs is shown below: Each output channel contains a storage capacitor, buffer amplifier, and variable gain output amplifier. When UlOA pin 1 goes HIGH, the multiplexor connects the DA converter output to the frequency channel for approximately 55 microseconds. During this period, the storage capacitor, C7, charges to the DAC output voltage, which, in the case of frequency, is from 0V to -10V. The buffer amplifier provides a high impedance load to prevent C7 from discharging during the 195 microseconds when no DAC voltage is output to the frequency channel. Ul8A is an inverting variable gain output amplifier and is adjusted so that the voltage at TP6 is one-tenth of the DAC output voltage. The magnitude and phase channels, ZOUT and QOUT, function similarly to the frequency channel, FOUT. The PEN UP/DOWN CONTROL, U5, provides automatic control of the X-Y recorder's pen. Normally, the Q output, pin 5, of U5 is HIGH (pen up). With the 4193A's X-Y RECORDER function set to ON, PENUP will go LOW (pen down) after the PARTIAL SWEEP START or FULL SWEEP START key is pressed. When the sweep is completed or aborted PENUP will automatically go HIGH. Figure 8-63. Als Board Troubleshooting Flow Chart. Figure 8-64. Al5 Analog Output Board Assembly Component Locations. Figure 8-65. Al5 Analog Output Board Assembly Schematic Diagram. Figure 8-66. Al6 Board Troubleshooting Flow Chart. Figure 8-67. Al6 HP-IB Board Assembly Component Locations. Figure 8-68. Al6 HP-IB Board Assembly Schematic Diagram.) Figure 8-67. Al7 Board Troubleshooting Flow Chart (Sheet 1 of 2). Figure 8-69. Al7 Board Troubleshooting Flow Chart (Sheet 2 of 2). Figure 8-70. Al7 Control Logic Board Assembly Component Locations. UI4C NORMAL Figure 8-71. Al7 Control Logic Board Assembly Schematic Diagram (Sheet 1 of 2). REFERENCE DESIGNATORS WITHIN THIS ASSEMBLY ARE ABBREVIATED. PREFIX ABBREVIATION WITH ASSEMBLY NUMBER FOR COMPLETE REFERENCE DESIGNATOR. RESISTANCE IN OHMS (Ω) CAPACITANCE IN MICROFARADS (νF) INDUCTANCE IN MICROHENRIES (νH) 2. UNLESS OTHERWISE INDICATED: Figure 8-70. Al7 Control Logic Board Assembly Component Locations. Figure 8-71. Al7 Control Logic Board Assembly Schematic Diagram (Sheet 2 of 2). Figure 8-69. Al8 Board Troubleshooting Flow Chart. Figure 8-73. Al8 Display Board Assembly Component Locations. Figure 8-74. Al8 Display Board Assembly Schematic Γ Figure 8-75. A20 Power Supply Board Assembly Component Locations. Figure 8-76. A20 Power Supply Board Assembly Schematic Dia